当前位置: X-MOL 学术Phys. Rep. › 论文详情
Data science applications to string theory
Physics Reports ( IF 28.295 ) Pub Date : 2019-11-20 , DOI: 10.1016/j.physrep.2019.09.005
Fabian Ruehle

We first introduce various algorithms and techniques for machine learning and data science. While there is a strong focus on neural network applications in unsupervised, supervised and reinforcement learning, other machine learning techniques are discussed as well. These include various clustering and anomaly detection algorithms, support vector machines, and decision trees. In addition, we review data science techniques such as genetic algorithms and topological data analysis. This first part of the review makes some reference to concepts in physics, but the explanations and examples do not assume any knowledge of string theory and should therefore be accessible to a wide variety of readers with a physics background. After that, we illustrate applications to string theory. We give an overview of existing string theory data sets and describe how they can be studied using data science techniques. We also explain the computational complexity involved in the investigation of string vacua. Example codes that illustrate the techniques introduced in this review are available from Fabian Ruehle (0000).
更新日期:2019-11-21

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug