当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Anatase TiO2 Confined in Carbon Nanopores for High‐Energy Li‐Ion Hybrid Supercapacitors Operating at High Rates and Subzero Temperatures
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2019-11-19 , DOI: 10.1002/aenm.201902993
Wenbin Fu 1 , Enbo Zhao 2 , Ruiying Ma 1 , Zifei Sun 2 , Yang Yang 1 , Marta Sevilla 3 , Antonio B. Fuertes 3 , Alexandre Magasinski 1 , Gleb Yushin 1
Affiliation  

Li‐ion hybrid supercapacitors (Li‐HSCs) hold great promise in future electrical energy storage due to their relatively high power and energy density. However, a major challenge lies in the slow kinetics of Li‐ion intercalation/extraction within metal‐oxide electrodes. Here, it is shown that ultrafast charge storage is realized by confining anatase TiO2 nanoparticles in carbon nanopores to enable a high‐rate anode for Li‐HSCs. The porous carbon with interconnected pore walls and open channels not only works as a conductive host to protect TiO2 from structural degradation but also provides fast pathways for ion/electron transport. As a result, the assembled cells exhibit remarkable rate capabilities with a specific capacity of ≈140 mAh g−1 at a slow charge and ≈60 mAh g−1 at a 3.5 s fast charge. While the charge/discharge process can be completed as fast as that of state‐of‐the‐art electrical double‐layer capacitors (EDLCs), the produced nanocomposites show three to seven times higher volumetric capacitance than activated carbons used in commercial EDLCs with acetonitrile‐based electrolytes. Equally important for some applications in cold climates or the space, the Li‐HSCs can operate at subzero temperatures as low as −40 °C, which is likely only limited by thermal properties of the acetonitrile (melting point of −45 °C).

中文翻译:

限制在碳纳米孔中的锐钛矿型TiO2,用于在高速率和零下温度下运行的高能锂离子混合超级电容器

锂离子混合超级电容器(Li‐HSC)由于其相对较高的功率和能量密度,在未来的电能存储中具有广阔的前景。然而,一个主要的挑战在于金属氧化物电极中锂离子嵌入/萃取的缓慢动力学。在此表明,通过将锐钛矿型TiO 2纳米颗粒限制在碳纳米孔中以实现Li-HSC的高速率阳极,可以实现超快电荷存储。具有互连的孔壁和开放通道的多孔碳不仅可以充当导电主体以保护TiO 2免受结构降解,而且还为离子/电子传输提供了快速途径。结果,组装后的电池展现出显着的速率能力,比容量约为140 mAh g -1在慢速充电时为≈60mAh g -1,在快速充电时为3.5 s。虽然充电/放电过程的完成速度可以与最先进的双电层电容器(EDLC)一样快,但所生产的纳米复合材料的体积电容是商业化乙二腈EDLC中所用活性炭的三至七倍。基于电解质。对于某些在寒冷气候或太空中的应用同样重要的是,Li-HSC可以在低至−40°C的零下温度下运行,这很可能仅受乙腈的热特性(熔点-45°C)限制。
更新日期:2020-01-14
down
wechat
bug