当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hierarchically Structured Porous Transport Layers for Polymer Electrolyte Water Electrolysis
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2019-11-18 , DOI: 10.1002/aenm.201903216
Tobias Schuler 1 , Joseph M. Ciccone 1 , Bernd Krentscher 2 , Federica Marone 3 , Christian Peter 1 , Thomas J. Schmidt 1, 4 , Felix N. Büchi 1
Affiliation  

The high operational and capital costs of polymer electrolyte water electrolysis technology originate from limited catalyst utilization and the use of thick membrane electrolytes. This is due to the coarse surface structure of the state‐of‐the‐art titanium porous transport layer materials used. Therefore, a series of materials with three different microporous layers (MPLs) with advanced interface properties are fabricated and characterized. It is shown that these sintered multilayer structures, made from economically viable titanium powders, have improved interface properties with low surface roughness, as characterized by X‐ray laboratory and synchrotron‐based tomographic microscopy. The transport layer materials provide superior electrochemical performance in comparison to conventional single‐layer structures, with up to three times higher catalyst layer utilization and a ≈60 mV decrease in (anodic) mass transport overpotential at 2 A cm−2. The MPLs combine preferential surface properties with high open porosity and low tortuosity of sinter materials, enabling for the first time the use of thin membranes, in combination with anodic titanium transport layers. The fundamental mechanism of the MPL effect is elucidated and shown to be based on a homogeneous contact pressure distribution, resulting in high catalyst utilization and low mass transport losses.

中文翻译:

聚合物电解质水电解的分层结构多孔传输层

聚合物电解质水电解技术的高运营和资本成本源自催化剂利用率有限和使用厚膜电解质。这是由于所使用的最先进的钛多孔传输层材料的表面结构较粗糙。因此,制造和表征了具有三种具有先进界面特性的不同微孔层(MPL)的材料。结果表明,这些烧结的多层结构由经济可行的钛粉制成,具有改进的界面性能,且表面粗糙度低,这是X射线实验室和基于同步加速器的断层显微镜所表征的。与传统的单层结构相比,传输层材料具有出色的电化学性能,−2。MPL将优先的表面性能与烧结材料的高开孔率和低曲折度结合在一起,从而首次将薄膜与阳极钛传输层结合使用。阐明了MPL效应的基本机理,并表明该机理基于均匀的接触压力分布,从而导致催化剂利用率高和传质损失小。
更新日期:2020-01-14
down
wechat
bug