当前位置: X-MOL 学术Environ. Toxicol. Pharmacol. › 论文详情
Nanoecotoxicology study of the response of magnetic O-Carboxymethylchitosan loaded silver nanoparticles on Artemia salina.
Environmental Toxicology and Pharmacology ( IF 3.061 ) Pub Date : 2019-11-16 , DOI: 10.1016/j.etap.2019.103298
Carla Albertina Demarchi,Luisa Mota da Silva,Anna Niedźwiecka,Anna Ślawska-Waniewska,Sabina Lewińska,Jacir Dal Magro,Jean Felipe Fossá Calisto,Rafael Martello,Clovis Antonio Rodrigues

Magnetic silver nanoparticles (MNPAg) are interesting nanotechnology materials with borderless environmental science, that can be used to disinfect water contaminated with pathogenic bacteria. The use of MNPAg leads to increased risk of nanomaterial contamination in the environment, especially natural water sources, with harmful effects on the ecosystem. This study investigating survival and enzyme activity of magnetic O-carboxymethylchitosan loaded silver nanoparticle on Artemia salina. The results showed that mortality increased with increasing concentrations of MNPAg. O-Carboxymethylchitosan loaded silver nanoparticles were found to be more toxic, with a LC50 of 902.1 mg/L for γ-Fe2O3/Ag without reducing agent. Accumulation of silver on Artemia salina depends on the type of nanoparticle. Accumulation of nanoparticle containing polymers (carboxymethylchitosan/γ-Fe2O3/Ag without reducing agent, carboxymethylchitosan/γ-Fe2O3/Ag reduced with sucrose and carboxymethylchitosan/γ-Fe2O3/Ag reduced with NaBH4) were found to be higher than γ-Fe2O3/Ag reduced with NaBH4, γ-Fe2O3/Ag reduced with sucrose and γ-Fe2O3/Ag without reducing agent under the same experimental conditions. The antioxidant enzyme (CAT, SOD and GST) activities increased slightly following exposure, indicating that the toxic effects are related to oxidative stress. The combined results so far indicate that MNPA does not have the potential to affect aquatic organisms when released into the ecosystem.
更新日期:2019-11-18

 

全部期刊列表>>
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
欢迎探索2019年最具下载量的化学论文
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug