当前位置: X-MOL 学术Cell › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Atoms to Phenotypes: Molecular Design Principles of Cellular Energy Metabolism.
Cell ( IF 45.5 ) Pub Date : 2019-11-14 , DOI: 10.1016/j.cell.2019.10.021
Abhishek Singharoy 1 , Christopher Maffeo 2 , Karelia H Delgado-Magnero 3 , David J K Swainsbury 4 , Melih Sener 5 , Ulrich Kleinekathöfer 6 , John W Vant 1 , Jonathan Nguyen 1 , Andrew Hitchcock 4 , Barry Isralewitz 5 , Ivan Teo 5 , Danielle E Chandler 5 , John E Stone 5 , James C Phillips 5 , Taras V Pogorelov 7 , M Ilaria Mallus 6 , Christophe Chipot 8 , Zaida Luthey-Schulten 9 , D Peter Tieleman 3 , C Neil Hunter 4 , Emad Tajkhorshid 10 , Aleksei Aksimentiev 11 , Klaus Schulten 2
Affiliation  

We report a 100-million atom-scale model of an entire cell organelle, a photosynthetic chromatophore vesicle from a purple bacterium, that reveals the cascade of energy conversion steps culminating in the generation of ATP from sunlight. Molecular dynamics simulations of this vesicle elucidate how the integral membrane complexes influence local curvature to tune photoexcitation of pigments. Brownian dynamics of small molecules within the chromatophore probe the mechanisms of directional charge transport under various pH and salinity conditions. Reproducing phenotypic properties from atomistic details, a kinetic model evinces that low-light adaptations of the bacterium emerge as a spontaneous outcome of optimizing the balance between the chromatophore's structural integrity and robust energy conversion. Parallels are drawn with the more universal mitochondrial bioenergetic machinery, from whence molecular-scale insights into the mechanism of cellular aging are inferred. Together, our integrative method and spectroscopic experiments pave the way to first-principles modeling of whole living cells.

中文翻译:


原子到表型:细胞能量代谢的分子设计原理。



我们报告了整个细胞器(一种来自紫色细菌的光合色素囊泡)的 1 亿原子级模型,该模型揭示了能量转换步骤的级联,最终从阳光中产生 ATP。该囊泡的分子动力学模拟阐明了完整的膜复合物如何影响局部曲率以调节色素的光激发。色素细胞内小分子的布朗动力学探讨了不同 pH 和盐度条件下定向电荷传输的机制。动力学模型从原子细节再现表型特性,证明细菌的低光适应是优化色素细胞结构完整性和强大能量转换之间平衡的自发结果。与更普遍的线粒体生物能量机制相似,从中可以推断出对细胞衰老机制的分子尺度见解。我们的综合方法和光谱实验共同为整个活细胞的第一原理建模铺平了道路。
更新日期:2019-11-14
down
wechat
bug