当前位置: X-MOL 学术ACS Cent. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stretchable and Fully Degradable Semiconductors for Transient Electronics
ACS Central Science ( IF 12.7 ) Pub Date : 2019-11-13 , DOI: 10.1021/acscentsci.9b00850
Helen Tran 1 , Vivian Rachel Feig 1 , Kathy Liu 1 , Hung-Chin Wu 1 , Ritchie Chen 1 , Jie Xu 1 , Karl Deisseroth 1 , Zhenan Bao 1
Affiliation  

The next materials challenge in organic stretchable electronics is the development of a fully degradable semiconductor that maintains stable electrical performance under strain. Herein, we decouple the design of stretchability and transience by harmonizing polymer physics principles and molecular design in order to demonstrate for the first time a material that simultaneously possesses three disparate attributes: semiconductivity, intrinsic stretchability, and full degradability. We show that we can design acid-labile semiconducting polymers to appropriately phase segregate within a biodegradable elastomer, yielding semiconducting nanofibers that concurrently enable controlled transience and strain-independent transistor mobilities. Along with the future development of suitable conductors and device integration advances, we anticipate that these materials could be used to build fully biodegradable diagnostic or therapeutic devices that reside inside the body temporarily, or environmental monitors that are placed in the field and break down when they are no longer needed. This fully degradable semiconductor represents a promising advance toward developing multifunctional materials for skin-inspired electronic devices that can address previously inaccessible challenges and in turn create new technologies.

中文翻译:


用于瞬态电子器件的可拉伸且完全可降解的半导体



有机可拉伸电子产品的下一个材料挑战是开发一种完全可降解的半导体,该半导体在压力下保持稳定的电气性能。在这里,我们通过协调聚合物物理原理和分子设计来解耦拉伸性和瞬态性的设计,以便首次证明一种材料同时具有三种不同的属性:半导电性、固有拉伸性和完全降解性。我们表明,我们可以设计酸不稳定的半导体聚合物,使其在可生物降解的弹性体中适当地相分离,产生半导体纳米纤维,同时实现受控的瞬态和与应变无关的晶体管迁移率。随着未来合适导体的开发和设备集成的进步,我们预计这些材料可用于构建暂时驻留在体内的完全可生物降解的诊断或治疗设备,或者放置在现场并在发生故障时发生故障的环境监测器。不再需要。这种完全可降解的半导体代表了为皮肤启发的电子设备开发多功能材料的一个有前途的进步,可以解决以前难以应对的挑战,进而创造新技术。
更新日期:2019-11-28
down
wechat
bug