当前位置: X-MOL 学术Eur. J. Heart Fail. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improving risk prediction in heart failure using machine learning.
European Journal of Heart Failure ( IF 18.2 ) Pub Date : 2019-11-12 , DOI: 10.1002/ejhf.1628
Eric D Adler 1 , Adriaan A Voors 2 , Liviu Klein 3 , Fima Macheret 4 , Oscar O Braun 5 , Marcus A Urey 1 , Wenhong Zhu 4 , Iziah Sama 2 , Matevz Tadel 6 , Claudio Campagnari 7 , Barry Greenberg 1 , Avi Yagil 1, 6
Affiliation  

BACKGROUND Predicting mortality is important in patients with heart failure (HF). However, current strategies for predicting risk are only modestly successful, likely because they are derived from statistical analysis methods that fail to capture prognostic information in large data sets containing multi-dimensional interactions. METHODS AND RESULTS We used a machine learning algorithm to capture correlations between patient characteristics and mortality. A model was built by training a boosted decision tree algorithm to relate a subset of the patient data with a very high or very low mortality risk in a cohort of 5822 hospitalized and ambulatory patients with HF. From this model we derived a risk score that accurately discriminated between low and high-risk of death by identifying eight variables (diastolic blood pressure, creatinine, blood urea nitrogen, haemoglobin, white blood cell count, platelets, albumin, and red blood cell distribution width). This risk score had an area under the curve (AUC) of 0.88 and was predictive across the full spectrum of risk. External validation in two separate HF populations gave AUCs of 0.84 and 0.81, which were superior to those obtained with two available risk scores in these same populations. CONCLUSIONS Using machine learning and readily available variables, we generated and validated a mortality risk score in patients with HF that was more accurate than other risk scores to which it was compared. These results support the use of this machine learning approach for the evaluation of patients with HF and in other settings where predicting risk has been challenging.

中文翻译:

使用机器学习改善心力衰竭的风险预测。

背景技术预测死亡率对心力衰竭(HF)患者很重要。但是,当前的预测风险的策略仅取得了一定程度的成功,这可能是因为它们源自统计分析方法,这些方法无法捕获包含多维交互作用的大型数据集中的预后信息。方法和结果我们使用机器学习算法来捕获患者特征和死亡率之间的相关性。通过训练增强型决策树算法来建立模型,以将5822例住院和门诊HF患者中的一部分患者数据与极高或极低的死亡风险相关联。从该模型中,我们通过识别八个变量(舒张压,肌酐,血尿素氮,血红蛋白,白细胞计数,血小板,白蛋白和红细胞分布宽度)。该风险评分的曲线下面积(AUC)为0.88,可在整个风险范围内进行预测。在两个单独的HF人群中进行的外部验证得出的AUC为0.84和0.81,优于在这些相同人群中获得两个可用风险评分的AUC。结论我们使用机器学习和易于获得的变量,生成并验证了心衰患者的死亡风险评分,该评分比其他可比的风险评分更为准确。这些结果支持使用这种机器学习方法来评估HF患者和其他难以预测风险的环境。和红细胞分布宽度)。该风险评分的曲线下面积(AUC)为0.88,可在整个风险范围内进行预测。在两个单独的HF人群中进行的外部验证得出的AUC为0.84和0.81,优于在这些相同人群中获得两个可用风险评分的AUC。结论我们使用机器学习和易于获得的变量,生成并验证了心衰患者的死亡风险评分,该评分比其他可比的风险评分更为准确。这些结果支持使用这种机器学习方法来评估HF患者和其他难以预测风险的环境。和红细胞分布宽度)。该风险评分的曲线下面积(AUC)为0.88,可在整个风险范围内进行预测。在两个单独的HF人群中进行的外部验证得出的AUC为0.84和0.81,优于在这些相同人群中获得两个可用风险评分的AUC。结论我们使用机器学习和易于获得的变量,生成并验证了心衰患者的死亡风险评分,该评分比其他可比的风险评分更为准确。这些结果支持使用这种机器学习方法来评估HF患者和其他难以预测风险的环境。在两个单独的HF人群中进行的外部验证得出的AUC为0.84和0.81,优于在这些相同人群中获得两个可用风险评分的AUC。结论我们使用机器学习和易于获得的变量,生成并验证了心衰患者的死亡风险评分,该评分比其他可比的风险评分更为准确。这些结果支持使用这种机器学习方法来评估HF患者和其他难以预测风险的环境。在两个单独的HF人群中进行的外部验证得出的AUC为0.84和0.81,优于在这些相同人群中获得两个可用风险评分的AUC。结论我们使用机器学习和易于获得的变量,生成并验证了心衰患者的死亡风险评分,该评分比其他可比的风险评分更为准确。这些结果支持使用这种机器学习方法来评估HF患者以及其他难以预测风险的环境。我们生成并验证了HF患者的死亡风险评分,该评分比其他可比的风险评分更为准确。这些结果支持使用这种机器学习方法来评估HF患者以及其他难以预测风险的环境。我们生成并验证了HF患者的死亡风险评分,该评分比其他可比的风险评分更为准确。这些结果支持使用这种机器学习方法来评估HF患者和其他难以预测风险的环境。
更新日期:2019-11-13
down
wechat
bug