当前位置: X-MOL 学术Comput. Fluids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development of Multi-Component Generalized Sphere Function Based Gas-Kinetic Flux Solver for Simulation of Compressible Viscous Reacting Flows
Computers & Fluids ( IF 2.8 ) Pub Date : 2020-01-01 , DOI: 10.1016/j.compfluid.2019.104382
Tianpeng Yang , Jiangfeng Wang , Liming Yang , Chang Shu

Abstract In this paper, a multi-component generalized sphere function based gas-kinetic flux solver is developed for simulation of compressible viscous reacting flows. This work is inspired by the existing simplified gas-kinetic schemes, which use the circular or sphere function to develop single-component gas-kinetic flux solvers. The present solver applies the finite volume method to discretize the multi-component Navier-Stokes equations and evaluate the numerical flux at the cell interface by using the local solution of Boltzmann equation. In order to unify the existing circular and sphere functions, a generalized sphere function is derived from a reduced Maxwellian distribution function by assuming that all the particles are concentrated on an N-dimensional sphere. The present solver is then developed by integrating the generalized sphere function on the sphere surface. To obtain a multi-component solver, the mass fraction from both sides of the cell interface is used to compute the densities of different species. Considering the different physical properties of the species, the internal energy is computed by enthalpy, and the temperature at the cell interface is obtained by Newton iteration. In addition, to control the numerical dissipation, which is relevant to the grid aspect ratio and the chemical reaction, an improved switch function is introduced. Several benchmark problems are simulated to validate the present solver. It is shown that the developed flux solver has a satisfied performance for simulation of multi-component compressible viscous reacting flows.

中文翻译:

用于模拟可压缩粘性反应流的基于多分量广义球函数的气体-动力学通量求解器的开发

摘要 本文开发了一种基于多分量广义球函数的气体动力学通量求解器,用于模拟可压缩粘性反应流。这项工作的灵感来自现有的简化气体动力学方案,这些方案使用圆形或球体函数来开发单组分气体动力学通量求解器。本求解器应用有限体积法离散多分量 Navier-Stokes 方程,并通过使用 Boltzmann 方程的局部解来评估单元界面处的数值通量。为了统一现有的圆函数和球函数,假设所有粒子都集中在一个 N 维球面上,从简化的麦克斯韦分布函数推导出广义球函数。然后通过在球面上对广义球函数进行积分来开发本求解器。为了获得多分量求解器,使用单元界面两侧的质量分数来计算不同物种的密度。考虑到物种的不同物理性质,内能通过焓计算,单元界面温度通过牛顿迭代获得。此外,为了控制与网格纵横比和化学反应相关的数值耗散,引入了改进的开关功能。模拟了几个基准问题以验证当前的求解器。结果表明,所开发的通量求解器在模拟多组分可压缩粘性反应流方面具有令人满意的性能。为了获得多分量求解器,使用单元界面两侧的质量分数来计算不同物种的密度。考虑到物种的不同物理性质,内能通过焓计算,单元界面温度通过牛顿迭代获得。此外,为了控制与网格纵横比和化学反应相关的数值耗散,引入了改进的开关功能。模拟了几个基准问题以验证当前的求解器。结果表明,所开发的通量求解器在模拟多组分可压缩粘性反应流方面具有令人满意的性能。为了获得多分量求解器,使用单元界面两侧的质量分数来计算不同物种的密度。考虑到物种的不同物理性质,内能通过焓计算,单元界面温度通过牛顿迭代获得。此外,为了控制与网格纵横比和化学反应相关的数值耗散,引入了改进的开关功能。模拟了几个基准问题以验证当前的求解器。结果表明,所开发的通量求解器在模拟多组分可压缩粘性反应流方面具有令人满意的性能。考虑到物种的不同物理性质,内能通过焓计算,单元界面温度通过牛顿迭代获得。此外,为了控制与网格纵横比和化学反应相关的数值耗散,引入了改进的开关功能。模拟了几个基准问题以验证当前的求解器。结果表明,所开发的通量求解器在模拟多组分可压缩粘性反应流方面具有令人满意的性能。考虑到物种的不同物理性质,内能通过焓计算,单元界面温度通过牛顿迭代获得。此外,为了控制与网格纵横比和化学反应相关的数值耗散,引入了改进的开关功能。模拟了几个基准问题以验证当前的求解器。结果表明,所开发的通量求解器在模拟多组分可压缩粘性反应流方面具有令人满意的性能。引入了改进的开关功能。模拟了几个基准问题以验证当前的求解器。结果表明,所开发的通量求解器在模拟多组分可压缩粘性反应流方面具有令人满意的性能。引入了改进的开关功能。模拟了几个基准问题以验证当前的求解器。结果表明,所开发的通量求解器在模拟多组分可压缩粘性反应流方面具有令人满意的性能。
更新日期:2020-01-01
down
wechat
bug