当前位置: X-MOL 学术Stem Cell Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Application of CRISPR/Cas9 editing and digital droplet PCR in human iPSCs to generate novel knock-in reporter lines to visualize dopaminergic neurons.
Stem Cell Research ( IF 0.8 ) Pub Date : 2019-11-09 , DOI: 10.1016/j.scr.2019.101656
Christa Überbacher 1 , Julia Obergasteiger 2 , Mattia Volta 2 , Serena Venezia 2 , Stefan Müller 3 , Isabella Pesce 4 , Sara Pizzi 2 , Giulia Lamonaca 2 , Anne Picard 2 , Giada Cattelan 2 , Giorgio Malpeli 5 , Michele Zoli 6 , Dayne Beccano-Kelly 7 , Rowan Flynn 8 , Richard Wade-Martins 7 , Peter P Pramstaller 2 , Andrew A Hicks 2 , Sally A Cowley 9 , Corrado Corti 2
Affiliation  

Human induced pluripotent stem cells (hiPSCs) have become indispensable for disease modelling. They are an important resource to access patient cells harbouring disease-causing mutations. Derivation of midbrain dopaminergic (DAergic) neurons from hiPSCs of PD patients represents the only option to model physiological processes in a cell type that is not otherwise accessible from human patients. However, differentiation does not produce a homogenous population of DA neurons and contaminant cell types may interfere with the readout of the in vitro system. Here, we use CRISPR/Cas9 to generate novel knock-in reporter lines for DA neurons, engineered with an endogenous fluorescent tyrosine hydroxylase – enhanced green fluorescent protein (TH-eGFP) reporter. We present a reproducible knock-in strategy combined with a highly specific homologous directed repair (HDR) screening approach using digital droplet PCR (ddPCR). The knock-in cell lines that we created show a functioning fluorescent reporter system for DA neurons that are identifiable by flow cytometry.



中文翻译:


在人类 iPSC 中应用 CRISPR/Cas9 编辑和数字液滴 PCR 来生成新型敲入报告基因系,以可视化多巴胺能神经元。



人类诱导多能干细胞(hiPSC)已成为疾病建模不可或缺的一部分。它们是获取含有致病突变的患者细胞的重要资源。从 PD 患者的 hiPSC 中衍生中脑多巴胺能 (DAergic) 神经元是模拟人类患者无法获得的细胞类型生理过程的唯一选择。然而,分化不会产生同质的 DA 神经元群体,污染细胞类型可能会干扰体外系统的读数。在这里,我们使用 CRISPR/Cas9 为 DA 神经元生成新型敲入报告基因系,并采用内源性荧光酪氨酸羟化酶 - 增强型绿色荧光蛋白 (TH-eGFP) 报告基因进行改造。我们提出了一种可重复的敲入策略,结合使用数字液滴 PCR (ddPCR) 的高度特异性同源定向修复 (HDR) 筛选方法。我们创建的敲入细胞系显示了 DA 神经元的功能荧光报告系统,可通过流式细胞术识别。

更新日期:2019-11-09
down
wechat
bug