当前位置: X-MOL 学术Neural Netw. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Model-based optimized phase-deviation deep brain stimulation for Parkinson 's disease.
Neural Networks ( IF 6.0 ) Pub Date : 2019-11-09 , DOI: 10.1016/j.neunet.2019.11.001
Ying Yu 1 , Yuqing Hao 1 , Qingyun Wang 1
Affiliation  

High-frequency deep brain stimulation (HF-DBS) of the subthalamic nucleus (STN), globus pallidus interna (GPi) and globus pallidus externa (GPe) are often considered as effective methods for the treatment of Parkinson's disease (PD). However, the stimulation of a single nucleus by HF-DBS can cause specific physical damage, produce side effects and usually consume more electrical energy. Therefore, we use a biophysically-based model of basal ganglia-thalamic circuits to explore more effective stimulation patterns to reduce adverse effects and save energy. In this paper, we computationally investigate the combined DBS of two nuclei with the phase deviation between two stimulation waveforms (CDBS). Three different stimulation combination strategies are proposed, i.e., STN and GPe CDBS (SED), STN and GPi CDBS (SID), as well as GPi and GPe CDBS (GGD). Resultantly, it is found that anti-phase CDBS is more effective in improving parkinsonian dynamical properties, including desynchronization of neurons and the recovery of the thalamus relay ability. Detailed simulation investigation shows that anti-phase SED and GGD are superior to SID. Besides, the energy consumption can be largely reduced by SED and GGD (72.5% and 65.5%), compared to HF-DBS. These results provide new insights into the optimal stimulation parameter and target choice of PD, which may be helpful for the clinical practice.

中文翻译:

针对帕金森氏病的基于模型的优化相差深部脑刺激。

丘脑底核(STN),苍白球(GPi)和苍白球(GPe)的高频深部脑刺激(HF-DBS)通常被认为是治疗帕金森氏病(PD)的有效方法。但是,HF-DBS对单个核的刺激会引起特定的物理损伤,产生副作用并通常消耗更多的电能。因此,我们使用基底神经节-丘脑回路的基于生物物理的模型来探索更有效的刺激模式,以减少不良影响并节省能量。在本文中,我们以计算方式研究了两个核的组合DBS以及两个刺激波形(CDBS)之间的相位偏差。提出了三种不同的刺激组合策略,即STN和GPe CDBS(SED),STN和GPi CDBS(SID),以及GPi和GPe CDBS(GGD)。结果,发现反相CDBS在改善帕金森氏动力学特性方面更有效,包括神经元失步和丘脑中继能力的恢复。详细的仿真研究表明,反相SED和GGD优于SID。此外,与HF-DBS相比,SED和GGD可以大大降低能耗(分别为72.5%和65.5%)。这些结果为PD的最佳刺激参数和目标选择提供了新的见识,这可能对临床实践很有帮助。详细的仿真研究表明,反相SED和GGD优于SID。此外,与HF-DBS相比,SED和GGD可以大大降低能耗(分别为72.5%和65.5%)。这些结果为PD的最佳刺激参数和目标选择提供了新的见识,这可能对临床实践很有帮助。详细的仿真研究表明,反相SED和GGD优于SID。此外,与HF-DBS相比,SED和GGD可以大大降低能耗(分别为72.5%和65.5%)。这些结果为PD的最佳刺激参数和目标选择提供了新的见识,这可能对临床实践很有帮助。
更新日期:2019-11-11
down
wechat
bug