当前位置: X-MOL 学术Biotechnol. Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Strategies for improving the electroactivity and specific metabolic functionality of microorganisms for various microbial electrochemical technologies.
Biotechnology Advances ( IF 12.1 ) Pub Date : 2019-11-07 , DOI: 10.1016/j.biotechadv.2019.107468
P Chiranjeevi 1 , Sunil A Patil 1
Affiliation  

Electroactive microorganisms, which possess extracellular electron transfer (EET) capabilities, are the basis of microbial electrochemical technologies (METs) such as microbial fuel and electrolysis cells. These are considered for several applications ranging from the energy-efficient treatment of waste streams to the production of value-added chemicals and fuels, bioremediation, and biosensing. Various aspects related to the microorganisms, electrodes, separators, reactor design, and operational or process parameters influence the overall functioning of METs. The most fundamental and critical performance-determining factor is, however, the microorganism-electrode interactions. Modification of the electrode surfaces and microorganisms for optimizing their interactions has therefore been the major MET research focus area over the last decade. In the case of microorganisms, primarily their EET mechanisms and efficiencies along with the biofilm formation capabilities, collectively considered as microbial electroactivity, affect their interactions with the electrodes. In addition to electroactivity, the specific metabolic or biochemical functionality of microorganisms is equally crucial to the target MET application. In this article, we present the major strategies that are used to enhance the electroactivity and specific functionality of microorganisms pertaining to both anodic and cathodic processes of METs. These include simple physical methods based on the use of heat and magnetic field along with chemical, electrochemical, and growth media amendment approaches to the complex procedure-based microbial bioaugmentation, co-culture, and cell immobilization or entrapment, and advanced toolkit-based biofilm engineering, genetic modifications, and synthetic biology strategies. We further discuss the applicability and limitations of these strategies and possible future research directions for advancing the highly promising microbial electrochemistry-driven biotechnology.



中文翻译:

为各种微生物电化学技术改善微生物的电活性和特定代谢功能的策略。

具有细胞外电子转移(EET)功能的电活性微生物是微生物电化学技术(METs)的基础,例如微生物燃料和电解池。这些技术在从节能处理废物流到生产增值化学品和燃料,生物修复和生物传感等多种应用中都得到了考虑。与微生物,电极,分离器,反应器设计以及操作或过程参数有关的各个方面都会影响MET的整体功能。然而,最基本和最关键的性能决定因素是微生物-电极相互作用。因此,在过去的十年中,修饰电极表面和微生物以优化它们之间的相互作用一直是MET研究的主要重点领域。就微生物而言,主要是其EET机制和效率以及生物膜形成能力(统称为微生物电活性)会影响其与电极的相互作用。除电活性外,微生物的特定代谢或生化功能对于目标MET应用同样至关重要。在本文中,我们介绍了主要的策略,这些策略用于增强与METs的阳极和阴极过程有关的微生物的电活性和特定功能。这些方法包括基于热和磁场使用的简单物理方法,以及基于复杂程序的微生物生物强化,共培养以及细胞固定或截留的化学,电化学和生长培养基修正方法,以及基于高级工具箱的生物膜工程,基因修饰和合成生物学策略。我们进一步讨论了这些策略的适用性和局限性,以及可能推动先进的微生物电化学驱动生物技术发展的未来研究方向。

更新日期:2019-11-07
down
wechat
bug