当前位置: X-MOL 学术Rep. Prog. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fluorite-structure antiferroelectrics
Reports on Progress in Physics ( IF 19.0 ) Pub Date : 2019-11-07 , DOI: 10.1088/1361-6633/ab49d6
Min Hyuk Park 1 , Cheol Seong Hwang
Affiliation  

Ferroelectricity in fluorite-structure oxides like hafnia and zirconia have attracted increasing interest since 2011. Two spontaneous polarizations of the fluorite-structure ferroelectrics are considered highly promising for nonvolatile memory applications, with their superior scalability and Si compatibility compared to the conventional perovskite-structure ferroelectrics. Besides, antiferroelectricity originating from a field-induced phase transition between the paraelectric and ferroelectric phases in fluorite-structure oxides is another highly interesting matter. It was suggested that the field-induced phase transition could be utilized for energy conversions between thermal and electrical energy, as well as for energy storage. The important energy-related applications of antiferroelectric fluorite-structure oxides, however, have not been systematically reviewed to date. Thus, in this work, the fluorite-structure antiferroelectrics are reviewed from their fundamentals to their applications based on pyroelectricity as well as antiferroelectricity. Another important application field of the fluorite-structure antiferroelectrics is the semiconductor memory devices. The fluorite-structure antiferroelectrics can be utilized for antiferroelectric random-access-memories, negative capacitance field-effect-transistors, and flash memories. Moreover, the recently reported morphotropic phase boundary (MPB) between the ferroelectric and antiferroelectric phases in this material system marks another significant progress in this material system, and thus, the fundamentals and applications of the MPB phase are also reviewed.

中文翻译:

萤石结构反铁电体

自 2011 年以来,铪和氧化锆等萤石结构氧化物中的铁电性引起了越来越多的关注。萤石结构铁电体的两种自发极化被认为在非易失性存储器应用中非常有前景,与传统的钙钛矿结构铁电体相比,它们具有出色的可扩展性和硅兼容性. 此外,源自萤石结构氧化物中顺电相和铁电相之间的场致相变的反铁电性是另一个非常有趣的问题。有人建议,场致相变可用于热能和电能之间的能量转换以及能量存储。然而,反铁电萤石结构氧化物的重要能源相关应用,迄今尚未系统地审查。因此,在这项工作中,萤石结构反铁电体从它们的基础到基于热电和反铁电的应用进行了回顾。萤石结构反铁电体的另一个重要应用领域是半导体存储器件。萤石结构反铁电体可用于反铁电随机存取存储器、负电容场效应晶体管和闪存。此外,最近报道的该材料系统中铁电相和反铁电相之间的同形相界(MPB)标志着该材料系统的另一项重大进展,因此,还回顾了 MPB 相的基本原理和应用。萤石结构反铁电体从其基本原理到基于热电性和反铁电性的应用进行了回顾。萤石结构反铁电体的另一个重要应用领域是半导体存储器件。萤石结构反铁电体可用于反铁电随机存取存储器、负电容场效应晶体管和闪存。此外,最近报道的该材料系统中铁电相和反铁电相之间的同形相界(MPB)标志着该材料系统的另一项重大进展,因此,还回顾了 MPB 相的基础和应用。萤石结构反铁电体从其基本原理到基于热电性和反铁电性的应用进行了回顾。萤石结构反铁电体的另一个重要应用领域是半导体存储器件。萤石结构反铁电体可用于反铁电随机存取存储器、负电容场效应晶体管和闪存。此外,最近报道的该材料系统中铁电相和反铁电相之间的同形相界(MPB)标志着该材料系统的另一项重大进展,因此,还回顾了 MPB 相的基础和应用。
更新日期:2019-11-07
down
wechat
bug