当前位置: X-MOL 学术Int. J. Heat Fluid Flow › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanism of compressor airfoil boundary layer flow control using nanosecond plasma actuation
International Journal of Heat and Fluid Flow ( IF 2.6 ) Pub Date : 2019-12-01 , DOI: 10.1016/j.ijheatfluidflow.2019.108502
Haideng Zhang , Yun Wu , Yinghong Li

Abstract The flow control effects of nanosecond plasma actuation on the boundary layer flow of a typical compressor controlled diffusion airfoil are investigated using large eddy simulation method. Three types of plasma actuation are designed to control the boundary layer flow, and two mechanisms of compressor airfoil boundary layer flow control using nanosecond plasma actuation have been found. The plasma actuations located within the laminar boundary layer flow can induce a small vortex structure through influencing on the density and pressure of the flow field. As the small vortex structure moves downstream along the blade surface with the main flow, it can suppress the turbulent flow mixing and reduce the total pressure loss. The flow control effect of the small vortex structure is summarized as wall jet effect. Differently, the plasma actuation located within the turbulent boundary layer flow can act on the shear layer flow and induce a large vortex structure. While moving downstream, this large vortex structure can suppress the turbulent flow mixing too.

中文翻译:

纳秒等离子体驱动压气机翼型边界层流动控制机制

摘要 采用大涡模拟方法研究了纳秒等离子体激励对典型压气机控制扩散翼型边界层流动的流动控制效应。设计了三种类型的等离子体驱动来控制边界层流动,并且已经发现了两种使用纳秒等离子体驱动控制压气机翼型边界层流动的机制。位于层流边界层流内的等离子体驱动可以通过影响流场的密度和压力来诱导小涡流结构。由于小涡结构随主流沿叶片表面向下游移动,可以抑制湍流混合,减少总压力损失。小涡结构的流动控制作用概括为壁射流效应。不同的是,位于湍流边界层流内的等离子体驱动可以作用于剪切层流并引起大的涡流结构。在向下游移动时,这种大涡流结构也可以抑制湍流混合。
更新日期:2019-12-01
down
wechat
bug