当前位置: X-MOL 学术Ultramicroscopy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanoscale temperature measurement during temperature controlled in situ TEM using Al plasmon nanothermometry
Ultramicroscopy ( IF 2.1 ) Pub Date : 2020-02-01 , DOI: 10.1016/j.ultramic.2019.112881
A Chmielewski 1 , C Ricolleau 1 , D Alloyeau 1 , G Wang 1 , J Nelayah 1
Affiliation  

Over recent years, the advent of microelectromechanical system (MEMS)-type microheaters has pushed the limits of temperature controlled in situ transmission electron microscopy (TEM). In particular, by enabling the observation of the structure of materials in their application environments, temperature controlled TEM provides unprecedented insights into the link between the properties of materials and their structure in real-world problems, a clear knowledge of which is necessary for rational development of functional materials with new or improved properties. While temperature is the key parameter in such experiments, accessing the precise temperature of the sample at the nanoscale during observations still remains challenging. In the present work, we have applied aluminium plasmon nanothermometry technique that monitors the temperature dependence of the volume plasmon of Al nanospheres using electron energy loss spectroscopy for in situ local temperature determination over MEMS-type microheaters. With access to local temperatures between room temperature to 550 ∘C, we have assessed the spatial and temporal stabilities of these microheaters when they operate at different setpoint temperatures both under vacuum and in the presence of a static H2 gas environment. Temperature comparisons performed under the two environments show discrepancies between local and setpoint temperatures.

中文翻译:

使用铝等离子体纳米测温法在原位 TEM 温度控制过程中进行纳米级温度测量

近年来,微机电系统 (MEMS) 型微型加热器的出现推动了温度控制原位透射电子显微镜 (TEM) 的极限。特别是,通过观察材料在其应用环境中的结构,温控 TEM 提供了对材料特性与其在现实世界问题中的结构之间的联系的前所未有的洞察,清楚地了解这些知识对于合理开发是必要的具有新的或改进的性能的功能材料。虽然温度是此类实验中的关键参数,但在观察过程中获得纳米级样品的精确温度仍然具有挑战性。在目前的工作中,我们已经应用了铝等离子体纳米测温技术,该技术使用电子能量损失光谱来监测铝纳米球体积等离子体的温度依赖性,以便在 MEMS 型微加热器上进行原位局部温度测定。通过访问室温到 550 ∘ C 之间的局部温度,我们评估了这些微型加热器在真空和静态 H2 气体环境下在不同设定点温度下运行时的空间和时间稳定性。在两种环境下进行的温度比较显示局部温度和设定点温度之间存在差异。通过访问室温到 550 ∘ C 之间的局部温度,我们评估了这些微型加热器在真空和静态 H2 气体环境下在不同设定点温度下运行时的空间和时间稳定性。在两种环境下进行的温度比较显示局部温度和设定点温度之间存在差异。通过访问室温到 550 ∘ C 之间的局部温度,我们评估了这些微型加热器在真空和静态 H2 气体环境下在不同设定点温度下运行时的空间和时间稳定性。在两种环境下进行的温度比较显示局部温度和设定点温度之间存在差异。
更新日期:2020-02-01
down
wechat
bug