当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Precisely Encoded Barcodes Using Tetrapod CdSe/CdS Quantum Dots with a Large Stokes Shift for Multiplexed Detection
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2019-11-04 , DOI: 10.1002/adfm.201906707
Weijie Wu 1 , Xujiang Yu 1 , Mengyu Gao 1 , Sehrish Gull 1 , Lisong Shen 2 , Weiwei Wang 2 , Li Li 3 , Yue Yin 3 , Wanwan Li 1
Affiliation  

A serious obstacle to the construction of high‐capacity optical barcodes in suspension array technology is energy transfer, which can prompt unpredictable barcode signals, limited barcode numbers, and the need for an unfeasible number of experimental iterations. This work reports an effective and simple way to eliminate energy transfer in multicolor quantum dots (QDs)‐encoded microbeads by incorporating tetrapod CdSe/CdS QDs with a large Stokes shift (about 180 nm). Exploiting this unique feature enables the facile realization of a theoretical 7 × 7‐1 barcoding matrix combining two colors and seven intensity levels. As such, microbeads containing tetrapod CdSe/CdS QDs are demonstrated to possess a powerful encoding capacity which allows for precise barcode design. The ability of the Shirasu porous glass membrane emulsification method to easily control microbead size facilitates the establishment of a 3D barcode library of 144 distinguishable barcodes, indicating the enormous potential to enable large‐scale multiplexed detection. Moreover, when applied for the multiplexed detection of five common allergens, these barcodes exhibit superior detection performance (limit of detection: 0.01–0.02 IU mL−1) for both spiked and patient serum samples. Therefore, this new coding strategy helps to expand barcoding capacity while simultaneously reducing the technical and economic barriers to the optical encoding of microbeads for high‐throughput multiplexed detection.

中文翻译:

使用具有大斯托克斯位移的四脚架CdSe / CdS量子点进行精确编码的条形码以进行多重检测

悬浮阵列技术中构建高容量光学条形码的一个严重障碍是能量转移,这可能会导致无法预测的条形码信号,有限的条形码数量以及需要不可行的实验迭代次数。这项工作报告了一种有效且简单的方法,该方法可以通过合并具有大斯托克斯位移(约180 nm)的四脚CdSe / CdS QD来消除多色量子点(QD)编码的微珠中的能量转移。利用此独特功能,可以轻松实现将两种颜色和七个强度级别结合在一起的理论7×7-1条形码矩阵。这样,包含四足体CdSe / CdS QD的微珠被证明具有强大的编码能力,可进行精确的条形码设计。Shirasu多孔玻璃膜乳化方法易于控制微珠尺寸的能力有助于建立包含144个可区分条形码的3D条形码库,这表明实现大规模多重检测的巨大潜力。此外,当这些条形码用于五种常见变应原的多重检测时,它们显示出出众的检测性能(检测极限:0.01–0.02 IU mL-1)用于加标血清样品和患者血清样品。因此,这种新的编码策略有助于扩大条形码的容量,同时减少用于高通量多重检测的微珠光学编码的技术和经济障碍。
更新日期:2020-01-17
down
wechat
bug