当前位置: X-MOL 学术Nat. Electron. › 论文详情
Whispering gallery modes enhance the near-infrared photoresponse of hourglass-shaped silicon nanowire photodiodes
Nature Electronics Pub Date : 2019-11-04 , DOI: 10.1038/s41928-019-0317-z
Kihyun Kim, Sol Yoon, Myunghae Seo, Seungho Lee, Hyeonsu Cho, M. Meyyappan, Chang-Ki Baek

Silicon photodiodes are widely used in applications that require the measurement of the intensity, colour and position of visible light. Silicon is an attractive material for these systems owing to its low cost, low noise, and easy on-chip integration with read-out electronics. However, silicon cannot effectively be used to detect near-infrared (NIR, at wavelengths of 700–1,000 nm) light and short-wave infrared (SWIR, 1,000–1,700 nm) light because of its bandgap of 1.12 eV, which is equivalent to a wavelength of 1,100 nm. Here, we report silicon photodiodes based on hourglass-shaped silicon nanowires that use whispering-gallery-mode resonances to enhance their photoresponse in the NIR–SWIR region of the spectrum. The upper, inverted nanocone of the nanowires increases absorption probability by extending the dwell time of NIR–SWIR photons via the generation of whispering-gallery-mode resonances, whereas the lower nanocone with its low reflectance reabsorbs the light incident from surrounding nanowires. Our devices exhibit a higher responsivity and external quantum efficiency than existing silicon photodiodes at 700–1,100 nm. Furthermore, the responsivity at 1,000 nm is similar to that of commercial InGaAs photodiodes and light at 1,400 nm can also be detected. Using our devices, we demonstrate a heart-rate measurement system that offers performance comparable to commercial setups.
更新日期:2019-11-04

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug