当前位置: X-MOL 学术Mol. Simulat. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dissipative particle dynamics simulation of the soft micro actuator using polymer chain displacement in electro-osmotic flow
Molecular Simulation ( IF 1.9 ) Pub Date : 2019-08-08 , DOI: 10.1080/08927022.2019.1648810
Ramin Zakeri 1
Affiliation  

ABSTRACT In this research, the numerical simulation of a soft polymer micro actuator performance has been investigated using the dissipative particle dynamics method in electro-osmotic flow. Effective factors including electro-osmotic flow and polymer chain parameters have been studied. First of all, considering a wide range of electro-osmotic parameters, the validation of analytical results is carried out in a simple micro channel. The electric field and zeta potential changes are linearly related to the flow rate, and the kh parameter behaves nonlinearly to around the kh = 10. In the following, a convergent–divergent channel is used for the soft micro actuator simulation in which a polymer chain as a heart of actuation is embedded in the middle. As the main control parameter, the direction of the electric field is changed every 4 s, and it leads to a reciprocating motion. The numerical results indicate that the displacement of the soft polymer chain will be increased by enhancing the electric field, the number of beads, decreasing the harmonic bond coefficient and also exposing more length of a polymer chain in front of fluid flow. The results of this study may be useful for some future applications such as artificial fibres and muscles.

中文翻译:

在电渗流中使用聚合物链位移的软微执行器的耗散粒子动力学模拟

摘要 在这项研究中,使用电渗流中的耗散粒子动力学方法研究了软聚合物微执行器性能的数值模拟。研究了包括电渗流和聚合物链参数在内的影响因素。首先,考虑到广泛的电渗参数,分析结果的验证是在一个简单的微通道中进行的。电场和 zeta 电位的变化与流速呈线性相关,kh 参数在 kh = 10 附近呈非线性行为。 在下文中,会聚-发散通道用于软微致动器模拟,其中聚合物链作为驱动的心脏嵌入在中间。作为主要控制参数,电场方向每 4 s 改变一次,它导致往复运动。数值结果表明,通过增强电场、增加珠子的数量、降低谐波键系数以及在流体流动前暴露更多长度的聚合物链,软聚合物链的位移会增加。这项研究的结果可能对一些未来的应用有用,例如人造纤维和肌肉。
更新日期:2019-08-08
down
wechat
bug