当前位置: X-MOL 学术Macromol. Mater. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stepwise Optimized 3D Printing of Arbitrary 3D Structures at Millimeter Scale with High Precision Surface
Macromolecular Materials and Engineering ( IF 4.2 ) Pub Date : 2019-07-31 , DOI: 10.1002/mame.201900400
Hua Yang 1, 2 , Yuan‐Yuan Zhao 3 , Mei‐Ling Zheng 1 , Feng Jin 1 , Xian‐Zi Dong 1 , Xuan‐Ming Duan 3 , Zhen‐Sheng Zhao 1
Affiliation  

3D printing based on additive manufacturing has attracted widespread attention in the fields of microbiology and microelectronics due to its advantages of waste reduction, arbitrary manufacturing, and rapid prototyping in potential applications. These techniques can create structures at the centimeter scale, however, there are some limitations in terms of resolution and geometric constraints. Here, a micro–nano 3D printing protocol based on additive manufacturing to achieve the 3D structure (3DS) not only possessing millimeter scale structural dimensions but also nanometer features are proposed. A theory is verified to assist the design and fabrication of the 3DS with millimeter scale and nanometer precision. The structures are predesigned and the scanning strategy is optimized before 3D printing to improve the manufacturing efficiency and precision. A customized 3DS with a height of 2.2 mm is obtained, which is a challenge for the conventional two‐photon polymerization fabrication. Furthermore, a 1.2 mm 3DS with inside scaffold and smooth surface is efficiently achieved within 2.7 h with a nanometer surface roughness by using the proposed stepwise optimized 3D printing process. This study offers a flexible and low‐cost technology to generate highly customizable, precisely controllable 3DS for potential applications in microelectronics and microdevices.

中文翻译:

毫米级,高精度表面的任意3D结构的逐步优化3D打印

基于增材制造的3D打印具有减少浪费,任意制造以及在潜在应用中快速制作原型的优点,已在微生物学和微电子学领域引起了广泛的关注。这些技术可以创建厘米级的结构,但是,在分辨率和几何约束方面存在一些限制。在这里,提出了一种基于增材制造的微纳米3D打印协议,以实现不仅具有毫米级结构尺寸而且具有纳米特征的3D结构(3DS)。验证了理论可以协助设计和制造毫米级和纳米级精度的3DS。在进行3D打印之前,对结构进行了预先设计,并优化了扫描策略,以提高制造效率和精度。获得了高度为2.2 mm的定制3DS,这对于常规的双光子聚合制造是一个挑战。此外,通过使用建议的逐步优化的3D打印工艺,可以在2.7小时内以纳米级的表面粗糙度有效地获得具有内部支架和光滑表面的1.2 mm 3DS。这项研究提供了一种灵活且低成本的技术,可生成高度可定制的,可精确控制的3DS,以用于微电子和微设备中的潜在应用。通过使用建议的逐步优化的3D打印工艺,可以在2.7小时内有效地获得具有纳米支架和光滑表面的2 mm 3DS,具有纳米表面粗糙度。这项研究提供了一种灵活且低成本的技术,可生成高度可定制,可精确控制的3DS,以用于微电子和微设备中的潜在应用。通过使用建议的逐步优化的3D打印工艺,可以在2.7小时内有效地获得具有纳米支架和光滑表面的2 mm 3DS,具有纳米表面粗糙度。这项研究提供了一种灵活且低成本的技术,可生成高度可定制的,可精确控制的3DS,以用于微电子和微设备中的潜在应用。
更新日期:2019-11-08
down
wechat
bug