当前位置: X-MOL 学术Proteins Struct. Funct. Bioinform. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Protonation state of the selectivity filter of bacterial voltage-gated sodium channels is modulated by ions.
Proteins: Structure, Function, and Bioinformatics ( IF 3.2 ) Pub Date : 2019-11-12 , DOI: 10.1002/prot.25831
Ana Damjanovic 1 , Ada Y Chen 2 , Robert L Rosenberg 3 , Daniel R Roe 4 , Xiongwu Wu 4 , Bernard R Brooks 4
Affiliation  

The selectivity filter (SF) of bacterial voltage-gated sodium channels consists of four glutamate residues arranged in a C4 symmetry. The protonation state population of this tetrad is unclear. To address this question, we simulate the pore domain of bacterial voltage-gated sodium channel of Magnetococcus sp. (Nav Ms) through constant pH methodology in explicit solvent and free energy perturbation calculations. We find that at physiological pH the fully deprotonated as well as singly and doubly protonated states of the SF appear feasible, and that the calculated pKa decreases with each additional bound ion, suggesting that a decrease in the number of ions in the pore can lead to protonation of the SF. Previous molecular dynamics simulations have suggested that protonation can lead to a decrease in the conductance, but no pKa calculations were performed. We confirm a decreased ionic population of the pore with protonation, and also observe structural symmetry breaking triggered by protonation; the SF of the deprotonated channel is closest to the C4 symmetry observed in crystal structures of the open state, while the SF of protonated states display greater levels of asymmetry which could lead to transition to the inactivated state which possesses a C2 symmetry in the crystal structure. We speculate that the decrease in the number of ions near the mouth of the channel, due to either random fluctuations or ion depletion due to conduction, could be a self-regulatory mechanism resulting in a nonconducting state that functionally resembles inactivated states.

中文翻译:

细菌电压门控钠通道的选择性过滤器的质子化状态受离子调节。

细菌电压门控钠通道的选择性过滤器(SF)由四个以C4对称排列的谷氨酸残基组成。该四联体的质子化态种群尚不清楚。为了解决这个问题,我们模拟了Magocococcus sp。的细菌电压门控钠通道的孔结构域。(Nav Ms)通过恒定pH方法进行显式溶剂和自由能扰动计算。我们发现,在生理pH值下,SF的完全去质子化以及单质子化和双质子化状态似乎是可行的,并且计算出的pKa随着每个附加的结合离子而降低,这表明孔中离子数量的减少会导致SF的质子化。先前的分子动力学模拟表明,质子化可导致电导降低,但没有执行pKa计算。我们确认了质子化导致孔中离子种群的减少,并且还观察到质子化引发的结构对称性破坏;去质子化通道的SF最接近在打开状态的晶体结构中观察到的C4对称性,而质子化状态的SF显示出更大的不对称性水平,这可能导致转变为在晶体结构中具有C2对称性的失活状态。我们推测,由于随机波动或由于传导引起的离子耗竭,通道口附近离子数量的减少可能是一种自我调节机制,导致了一种非传导状态,在功能上类似于失活状态。并观察质子化引起的结构对称性破坏;去质子化通道的SF最接近在开放状态的晶体结构中观察到的C4对称性,而质子化状态的SF显示出更大的不对称性水平,这可能导致转变为在晶体结构中具有C2对称性的失活状态。我们推测,由于随机波动或由于传导引起的离子耗竭,通道口附近离子数量的减少可能是一种自我调节机制,导致了一种非传导状态,在功能上类似于失活状态。并观察质子化引起的结构对称性破坏;去质子化通道的SF最接近在开放状态的晶体结构中观察到的C4对称性,而质子化状态的SF显示出更大的不对称性水平,这可能导致转变为在晶体结构中具有C2对称性的失活状态。我们推测,由于随机波动或由于传导引起的离子耗竭,通道口附近离子数量的减少可能是一种自我调节机制,导致了一种非传导状态,在功能上类似于失活状态。而质子化状态的SF表现出更大的不对称度,这可能导致过渡到在晶体结构中具有C2对称性的失活状态。我们推测,由于随机波动或由于传导引起的离子耗竭,通道口附近离子数量的减少可能是一种自我调节机制,导致了一种非传导状态,在功能上类似于失活状态。而质子化状态的SF表现出更大的不对称度,这可能导致过渡到在晶体结构中具有C2对称性的失活状态。我们推测,由于随机波动或由于传导引起的离子耗竭,通道口附近离子数量的减少可能是一种自我调节机制,导致了一种非传导状态,在功能上类似于失活状态。
更新日期:2020-01-24
down
wechat
bug