当前位置: X-MOL 学术J. Solut. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Some New Contributions to the Theory of Polyelectrolyte Solutions: Prediction of Polyion Conformation and Interpretation of Some Deviations from Kohlrausch’s Law According to the Superposition Principle and the Dielectric Friction Effect
Journal of Solution Chemistry ( IF 1.4 ) Pub Date : 2019-10-17 , DOI: 10.1007/s10953-019-00916-9
Jalel M’halla , Sondes Boughammoura , Anis Ghazouani

Conductivity measurements in water and at 25 °C show that the variation of the equivalent conductivity ΛPX with the counter ion concentration CX of some PDDPX polyelectrolytes, poly(1,1-dimethyl-3,5-dimethylene piperidinium, X), for X ≡ Br−, Cl−, NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{NO}}_{3}^{ - }$$\end{document} and F−, is characterized by an inversion in Kohlraush’s law (i.e., ∀\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\forall$$\end{document}C, ΛPX < ΛPX′ if λX∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda_{\text{X}}^{ \circ }$$\end{document} > λX′∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda_{{\text{X}}^{\prime}}^{ \circ }$$\end{document}), where λX∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda_{\text{X}}^{ \circ }$$\end{document} is the conductivity of the counter ion X at infinite dilution. This anomaly cannot be explained in the case of stretched polyions, by the dependence of ΛPX with the degree of dissociation αX, since αX remains quasi-constant at about 0.7 for CX < 2 × 10−2 mol·L−1. On the other hand, such a reversal implies that in the case of a coiled conformation, there is an increase in the ionic condensation, which is incompatible with hydrophobic folding. Similarly, hydrodynamic, electrophoretic and ionic frictions on these PDDPX polyelectrolytes cannot explain this inversion given their weak dependence with the nature of the counter ion X. In fact, for X ≡ Br−, Cl−, NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{NO}}_{3}^{ - }$$\end{document}, and for X ≡ F− with CX > 10−3 mol·L−1, this anomaly occurs for PDDPZS+ polyions having a completely stretched chain conformation for which the translational dielectric friction effect on their charged groups becomes important to a variable degree depending on the nature of X. For PDDPF polyelectrolytes, this anomaly is amplified at high dilution because of possible synergy between the ionic dissociation and the hydrophobic character of the polyion, giving rise to a “pearl-necklace conformation” of effective length, L, decreasing with the dilution. In this work, we represent the conformation of polyions by an ellipsoid with a variable eccentricity γp, or by a chain of charged spheres with a variable group radius Rg, or by a pearl necklace model with a variable length L and a variable bead radius. The stability of the general configuration was formally studied according to a new approach based on the principle of superposition of ionic screening effects on the different charged groups.

中文翻译:

聚电解质溶液理论的一些新贡献:根据叠加原理和介电摩擦效应预测聚离子构象和解释科尔劳施定律的一些偏差

其中 λX∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\ oddsidemargin}{-69pt} \begin{document}$$\lambda_{\text{X}}^{ \circ }$$\end{document} 是无限稀释时反离子 X 的电导率。在拉伸聚离子的情况下,无法通过 ΛPX 与解离度 αX 的相关性来解释这种异常,因为对于 CX < 2 × 10-2 mol·L-1,αX 保持在大约 0.7 处的准常数。另一方面,这种逆转意味着在卷曲构象的情况下,离子缩合增加,这与疏水折叠不相容。同样,流体力学,由于离子解离和聚离子的疏水特性之间可能存在协同作用,这种异常在高度稀释时会被放大,从而产生有效长度 L 的“珍珠项链构象”,并随着稀释而减少。在这项工作中,我们通过具有可变偏心率 γp 的椭球,或通过具有可变群半径 Rg 的带电球链,或通过具有可变长度 L 和可变珠半径的珍珠项链模型来表示聚离子的构象。根据基于不同带电基团离子屏蔽效应叠加原理的新方法,正式研究了一般构型的稳定性。在这项工作中,我们通过具有可变偏心率 γp 的椭球,或通过具有可变群半径 Rg 的带电球链,或通过具有可变长度 L 和可变珠半径的珍珠项链模型来表示聚离子的构象。根据基于不同带电基团离子屏蔽效应叠加原理的新方法,正式研究了一般构型的稳定性。在这项工作中,我们通过具有可变偏心率 γp 的椭球,或通过具有可变群半径 Rg 的带电球链,或通过具有可变长度 L 和可变珠半径的珍珠项链模型来表示聚离子的构象。根据基于不同带电基团离子屏蔽效应叠加原理的新方法,正式研究了一般构型的稳定性。
更新日期:2019-10-17
down
wechat
bug