当前位置: X-MOL 学术Nano Today › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Carbon nanomaterials for advanced lithium sulfur batteries
Nano Today ( IF 13.2 ) Pub Date : 2018-04-01 , DOI: 10.1016/j.nantod.2018.02.006
Zheng-Long Xu , Jang-Kyo Kim , Kisuk Kang

Abstract Taking advantage of a high theoretical energy density of 2567 Wh kg-1, lithium sulfur batteries (LSBs) have been considered promising candidates for next-generation energy storage systems. Nevertheless, challenging issues involving both sulfur cathode and lithium anode hinder their practical applications, which are followed by the extensive research efforts to resolve them. A wide variety of carbon nanomaterials with different characteristics has played an important role in enhancing the performance of LSBs via immobilizing sulfur in cathodes, accommodating the volume expansion of sulfur, enhancing the reaction kinetics and stabilizing lithium anodes. This report overviews the state-of-the-art progress in designing and fabricating nanocarbon for advanced LSBs with particular focuses on the correlations among porosity, electrical conductivity and surface chemistry as some of the most critical factors. More importantly, statistical analysis of electrochemical performance of batteries collected from literatures allows us to identify substantial disparities between the current achievements and the requirements for real-world applications. In an effort to bridge this gap, we highlight recent advances in the design of LSBs with improved sulfur loading, enhanced charge transfer and minimized electrolyte/sulfur ratio. Conclusions and perspectives for future development of nanocarbon in LSBs are proposed.

中文翻译:

用于先进锂硫电池的碳纳米材料

摘要 利用 2567 Wh kg-1 的高理论能量密度,锂硫电池 (LSB) 被认为是下一代储能系统的有希望的候选者。然而,涉及硫正极和锂负极的挑战性问题阻碍了它们的实际应用,随后进行了广泛的研究工作来解决这些问题。各种具有不同特性的碳纳米材料通过将硫固定在正极、适应硫的体积膨胀、增强反应动力学和稳定锂负极,在提高 LSB 的性能方面发挥了重要作用。本报告概述了为高级 LSB 设计和制造纳米碳的最新进展,特别关注孔隙率、导电性和表面化学是一些最关键的因素。更重要的是,从文献中收集的电池电化学性能的统计分析使我们能够确定当前成就与实际应用要求之间的巨大差异。为了弥补这一差距,我们强调了 LSB 设计的最新进展,这些进展具有改进的硫负载、增强的电荷转移和最小化的电解质/硫比。提出了 LSB 中纳米碳未来发展的结论和前景。从文献中收集的电池电化学性能的统计分析使我们能够确定当前成就与实际应用要求之间的巨大差异。为了弥补这一差距,我们强调了 LSB 设计的最新进展,这些进展具有改进的硫负载、增强的电荷转移和最小化的电解质/硫比。提出了 LSB 中纳米碳未来发展的结论和前景。从文献中收集的电池电化学性能的统计分析使我们能够确定当前成就与实际应用要求之间的巨大差异。为了弥补这一差距,我们强调了 LSB 设计的最新进展,这些进展具有改进的硫负载、增强的电荷转移和最小化的电解质/硫比。提出了 LSB 中纳米碳未来发展的结论和前景。
更新日期:2018-04-01
down
wechat
bug