当前位置: X-MOL 学术Int. J. Heat Fluid Flow › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of heat flux on boundary layer flow under rotating conditions
International Journal of Heat and Fluid Flow ( IF 2.6 ) Pub Date : 2019-12-01 , DOI: 10.1016/j.ijheatfluidflow.2019.108493
Ruquan You , Shengjun Zhou , Haiwang Li , Zhi Tao

Abstract The boundary layer flow behaviour in a smooth rotating channel with heated walls is measured by particle image velocimetry (PIV). To simulate the real operation environment of an internal coolant channel in a turbine blade, airflow is analysed in a rotating channel, whose four walls are uniformly heated by Indium Tin Oxide (ITO) glass. The flow is measured in the middle plane of the rotating channel with a Reynolds number equal to 10000 and rotation numbers ranging from 0 to 0.52. The results are presented for the boundary layer flow behaviour with and without heated thermal boundary conditions. The buoyancy force generated by the heated walls influences the flow behaviour under rotating conditions. Separated flow occurs, which substantially influences the turbulent flow behaviours. Sometimes, this buoyancy force can determine the flow behaviours. The results also showed that the displacement thickness and the momentum loss thickness present new changes at different radius positions due to the heated thermal boundary conditions. The displacement thicknesses of both the leading and trailing sides with heated walls are both thicker than those of the leading and trailing sides without heated walls. Then, the difference of the boundary layer thickness between these two cases increases with the increase of rotation number. For momentum loss thickness, a sharp drop happens when the rotation number increases to a certain value. At the large radius position, the drop in momentum loss thickness is much greater than that in the small radius position.

中文翻译:

旋转条件下热通量对边界层流动的影响

摘要 通过粒子图像测速仪 (PIV) 测量了具有加热壁的光滑旋转通道中的边界层流动行为。为了模拟涡轮叶片内部冷却剂通道的真实运行环境,我们对旋转通道中的气流进行了分析,该通道的四个壁均由氧化铟锡 (ITO) 玻璃均匀加热。在雷诺数等于 10000 和旋转数范围从 0 到 0.52 的旋转通道的中间平面中测量流动。给出了具有和不具有加热热边界条件的边界层流动行为的结果。加热壁产生的浮力会影响旋转条件下的流动行为。发生分离流,这会显着影响湍流行为。有时,这种浮力可以决定流动行为。结果还表明,由于受热热边界条件,位移厚度和动量损失厚度在不同半径位置呈现新的变化。带加热壁的前、后侧位移厚度均大于无加热壁的前、后侧位移厚度。然后,这两种情况之间边界层厚度的差异随着旋转次数的增加而增加。对于动量损失厚度,当旋转数增加到一定值时会发生急剧下降。在大半径位置,动量损失厚度的下降远大于小半径位置。结果还表明,由于受热热边界条件,位移厚度和动量损失厚度在不同半径位置呈现新的变化。带加热壁的前、后侧位移厚度均大于无加热壁的前、后侧位移厚度。然后,这两种情况之间边界层厚度的差异随着旋转次数的增加而增加。对于动量损失厚度,当旋转数增加到一定值时会发生急剧下降。在大半径位置,动量损失厚度的下降远大于小半径位置。结果还表明,由于受热热边界条件,位移厚度和动量损失厚度在不同半径位置呈现新的变化。带加热壁的前、后侧位移厚度均大于无加热壁的前、后侧位移厚度。然后,这两种情况之间边界层厚度的差异随着旋转次数的增加而增加。对于动量损失厚度,当旋转数增加到一定值时会发生急剧下降。在大半径位置,动量损失厚度的下降远大于小半径位置。带加热壁的前、后侧位移厚度均大于无加热壁的前、后侧位移厚度。然后,这两种情况之间边界层厚度的差异随着旋转次数的增加而增加。对于动量损失厚度,当旋转数增加到一定值时会发生急剧下降。在大半径位置,动量损失厚度的下降远大于小半径位置。带加热壁的前、后侧位移厚度均大于无加热壁的前、后侧位移厚度。然后,这两种情况之间边界层厚度的差异随着旋转次数的增加而增加。对于动量损失厚度,当旋转数增加到一定值时会发生急剧下降。在大半径位置,动量损失厚度的下降远大于小半径位置。当旋转数增加到一定值时会发生急剧下降。在大半径位置,动量损失厚度的下降远大于小半径位置。当旋转数增加到一定值时会发生急剧下降。在大半径位置,动量损失厚度的下降远大于小半径位置。
更新日期:2019-12-01
down
wechat
bug