当前位置: X-MOL 学术Adv. Mater. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanosecond Pulsed Electric Field Lab‐on‐Chip Integrated in Super‐Resolution Microscope for Cytoskeleton Imaging
Advanced Materials Technologies ( IF 6.4 ) Pub Date : 2019-10-28 , DOI: 10.1002/admt.201900669
Daniel Havelka 1 , Djamel Eddine Chafai 1 , Ondrej Krivosudský 1 , Anastasiya Klebanovych 2 , František Vostárek 3 , Lucie Kubínová 3 , Pavel Dráber 2 , Michal Cifra 1
Affiliation  

Nanosecond pulsed electric field offers novel opportunities in bionanotechnology and biomedicine enabling ultrafast physical control of membrane, and protein‐based processes for the development of novel bionanomaterials and biomedical theranostic methods. However, the mechanisms of nanosecond pulsed electric field action at the nano‐ and molecular scale are not fully understood due to lack of appropriate research tools. In order to overcome this challenge, a technological platform for the exploration of these mechanisms in live biological samples is provided here. This paper describes step by step the proposed chip platform, including the design, fabrication, installation, and testing of the chip. The developed chip is capable of delivering hundreds of volts of nanosecond electric pulses compared to conventional chips using few volts. Moreover, the chip is fully integrated into a super‐resolution microscope. Later on, the chip function is demonstrated by affecting microtubule architecture in living cells. Therefore, the chip‐based technological advancement enables the assessment of pulsed electric field effects on bionanostructures and observing their effects in real‐time. The results contribute to the chip‐based high‐frequency bioelectronics technology for modulating the function of biological matter at the nanoscale level.

中文翻译:

纳秒脉冲电场芯片实验室集成在超分辨率显微镜中,用于细胞骨架成像

纳秒脉冲电场为生物纳米技术和生物医学提供了新的机遇,从而能够对膜进行超快的物理控制,以及基于蛋白质的过程来开发新型生物纳米材料和生物医学治疗方法。但是,由于缺乏合适的研究工具,人们尚未完全理解纳秒级脉冲电场在纳米和分子尺度上的作用机理。为了克服这一挑战,这里提供了一个技术平台,用于探索活生物样品中的这些机制。本文分步描述了拟议的芯片平台,包括芯片的设计,制造,安装和测试。与使用几伏特的传统芯片相比,开发的芯片能够提供数百伏的纳秒电脉冲。而且,该芯片已完全集成到超分辨率显微镜中。后来,通过影响活细胞中的微管结构来证明芯片功能。因此,基于芯片的技术进步使得能够评估脉冲电场对生物纳米结构的影响并实时观察其影响。这些结果有助于基于芯片的高频生物电子技术在纳米水平上调节生物物质的功能。
更新日期:2020-03-09
down
wechat
bug