当前位置: X-MOL 学术J. Taiwan Inst. Chem. E. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Battery-active monoclinic Li2MnSiO4 synthesized via temperature programmed reaction
Journal of the Taiwan Institute of Chemical Engineers ( IF 5.5 ) Pub Date : 2019-10-28 , DOI: 10.1016/j.jtice.2019.10.008
K. Shree Kesavan , M.S. Michael , S.R.S. Prabaharan

Hitherto, synthesis of a single-phase Li2MnSiO4 has been perceived to be a challenging task owing to the formation energy possessed by different polymorphs is very close. In this context, we report a facile synthesis protocol by optimizing the synthesis conditions such as gas atmosphere, annealing temperature and time to obtain a phase pure crystalline monoclinic phase of Li2MnSiO4 (m-Li2MnSiO4). During the process, to avoid the formation of mixed phases of Li2MnSiO4, the dried precursor substance is subjected to following heat treatment conditions: (1) dried precursor is heated at ambient atmosphere followed by annealing; (2) maintaining a controlled flow of either O2 gas purging adapting a temperature-programmed reaction (TPR). Analysis of X-ray powder patterns reveal that during the process of heat treatment, the controlled purging of O2 is imperative to achieve battery-active monoclinic Li2MnSiO4. Perhaps the formation of m-Li2MnSiO4 occurs during the decomposition of starting material at ∼ 300 °C itself as evident from TGA/DSC analysis further annealing is essential to improve its crystallinity. The controlled flow of O2 purging results in mono dispersion of nanoparticles (TEM analysis) whereas the conventional method of annealing leads to the agglomeration of nanoparticles. Interestingly, m-Li2MnSiO4 product thus obtained exhibit mesoporosity irrespective of synthesis conditions employed. The superior electrochemical performance observed in m-Li2MnSiO4 prepared via temperature-programmed reaction (TPR) is attributed to its higher surface area, high pore volume and mono dispersion of nanoparticles. The degradation of capacity of m-Li2MnSiO4 when the lower voltage is extended to 2.5 V is owing to the formation Mn2O3.



中文翻译:

电池活性单斜立2 MnSiO 4合成通过程序升温反应

迄今为止,由于不同多晶型物具有的形成能非常接近,单相Li 2 MnSiO 4的合成被认为是一项艰巨的任务。在这种情况下,我们报告了一种通过优化合成条件(例如气体气氛,退火温度和时间)来获得Li 2 MnSiO 4m -Li 2 MnSiO 4)的纯结晶单斜晶相的简便合成方案在此过程中,要避免形成Li 2 MnSiO 4的混合相之后,将干燥的前体物质进行以下热处理条件:(1)将干燥的前体在环境气氛下加热,然后进行退火;(2)保持O 2气体吹扫的受控流量,以适应程序升温反应(TPR)。X射线粉末图谱分析表明,在热处理过程中,必须实现O 2的可控净化,以实现具有电池活性的单斜晶Li 2 MnSiO 4。可能形成m -Li 2 MnSiO 4从TGA / DSC分析可以看出,原料本身在约300°C的分解过程中会发生这种情况,进一步退火对于提高其结晶度至关重要。O 2吹扫的受控流导致纳米颗粒的单分散(TEM分析),而传统的退火方法导致纳米颗粒的团聚。有趣的是,由此获得的m -Li 2 MnSiO 4产物表现出介孔性,而与所采用的合成条件无关。通过制备的m -Li 2 MnSiO 4具有优异的电化学性能程序升温反应(TPR)归因于其较高的表面积,高孔体积和纳米颗粒的单分散性。当较低的电压延伸至2.5V时,由于形成了Mn 2 O 3m -Li 2 MnSiO 4的容量降低。

更新日期:2019-10-28
down
wechat
bug