当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Self‐Assembled Room Temperature Multiferroic BiFeO3‐LiFe5O8 Nanocomposites
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2019-10-24 , DOI: 10.1002/adfm.201906849
Yogesh Sharma 1 , Radhe Agarwal 2 , Liam Collins 3 , Qiang Zheng 1, 4 , Anton V. Ievlev 3 , Raphael P. Hermann 1 , Valentino R. Cooper 1 , Santosh KC 1 , Ilia N. Ivanov 3 , Ram S. Katiyar 2 , Sergei V. Kalinin 3 , Ho Nyung Lee 1 , Seungbum Hong 5 , Thomas Z. Ward 1
Affiliation  

Multiferroic materials have driven significant research interest due to their promising technological potential. Developing new room‐temperature multiferroics and understanding their fundamental properties are important to reveal unanticipated physical phenomena and potential applications. Here, a new room temperature multiferroic nanocomposite comprised of an ordered ferrimagnetic spinel α‐LiFe5O8 (LFO) and a ferroelectric perovskite BiFeO3 (BFO) is presented. It is observed that lithium (Li)‐doping in BFO favors the formation of LFO spinel as a secondary phase during the synthesis of LixBi1−xFeO3 ceramics. Multimodal functional and chemical imaging methods are used to map the relationship between doping‐induced phase separation and local ferroic properties in both the BFO‐LFO composite ceramics and self‐assembled nanocomposite thin films. The energetics of phase separation in Li doped BFO and the formation of BFO‐LFO composites are supported by first principles calculations. These findings shed light on Li's role in the formation of a functionally important room temperature multiferroic and open a new approach in the synthesis of light element doped nanocomposites for future energy, sensing, and memory applications.

中文翻译:

自组装室温多铁性BiFeO3-LiFe5O8纳米复合材料

多铁性材料由于其有前途的技术潜力而引起了广泛的研究兴趣。开发新的室温多铁磁并了解其基本特性对于揭示意料之外的物理现象和潜在应用非常重要。在这里,由一个新的室温多铁纳米复合材料有序亚铁磁性尖晶石α-LIFE 5 Ö 8(LFO)和铁电钙钛矿的BiFeO 3(BFO)被呈现。可以看出,在Li x Bi 1- x FeO 3的合成过程中,在BFO中掺杂锂(Li)有助于形成LFO尖晶石作为第二相。陶瓷。多峰函数和化学成像方法可用于绘制BFO-LFO复合陶瓷和自组装纳米复合薄膜中掺杂诱导的相分离与局部铁性之间的关系。锂掺杂BFO中的相分离能以及BFO-LFO复合材料的形成均受第一性原理计算的支持。这些发现揭示了李在功能上重要的室温多铁形成过程中的作用,并为合成轻元素掺杂的纳米复合材料开辟了一种新的方法,可用于未来的能源,传感和存储应用。
更新日期:2020-01-17
down
wechat
bug