当前位置: X-MOL 学术Mol. Cell. Neurosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Crosstalk between Nrf2 signaling and mitochondrial function in Parkinson's disease.
Molecular and Cellular Neuroscience ( IF 2.6 ) Pub Date : 2019-10-20 , DOI: 10.1016/j.mcn.2019.103413
Navneet Ammal Kaidery 1 , Manuj Ahuja 1 , Bobby Thomas 2
Affiliation  

Search for a definitive cure for neurodegenerative disorders like Parkinson's disease (PD) has met with little success. Mitochondrial dysfunction and elevated oxidative stress precede characteristic loss of dopamine-producing neurons from the midbrain in PD. The majority of PD cases are classified as sporadic (sPD) with an unknown etiology, whereas mutations in a handful of genes cause monogenic form called familial (fPD). Both sPD and fPD is characterized by proteinopathy and mitochondrial dysfunction leading to increased oxidative stress. These pathophysiological mechanisms create a vicious cycle feeding into each other, ultimately tipping the neurons to its demise. Effect of iron accumulation and dopamine oxidation adds an additional dimension to mitochondrial oxidative stress and apoptotic pathways affected. Nrf2 is a redox-sensitive transcription factor which regulates basal as well as inducible expression of antioxidant enzymes and proteins involved in xenobiotic detoxification. Recent advances, however, shows a multifaceted role for Nrf2 in the regulation of genes connected with inflammatory response, metabolic pathways, protein homeostasis, iron management, and mitochondrial bioenergetics. Here we review the role of mitochondria and oxidative stress in the PD etiology and the potential crosstalk between Nrf2 signaling and mitochondrial function in PD. We also make a case for the development of therapeutics that safely activates Nrf2 pathway in halting the progression of neurodegeneration in PD patients.

中文翻译:

Nrf2信号传导与帕金森氏病线粒体功能之间的串扰。

寻求针对神经退行性疾病(如帕金森氏病(PD))的明确治疗方法的努力收效甚微。线粒体功能障碍和氧化应激升高先于PD中脑多巴胺生成神经元的特征性丧失。大多数PD病例被归类为病因不明的散发性(sPD),而少数基因中的突变会导致称为家族性(fPD)的单基因形式。sPD和fPD均以蛋白病和线粒体功能障碍为特征,导致氧化应激增加。这些病理生理机制相互之间形成了一个恶性循环,最终使神经元死亡。铁积累和多巴胺氧化的影响增加了线粒体氧化应激和凋亡途径的影响。Nrf2是氧化还原敏感的转录因子,可调节与异源生物解毒有关的抗氧化酶和蛋白质的基础表达和诱导表达。然而,最近的进展显示,Nrf2在调节与炎症反应,代谢途径,蛋白质稳态,铁管理和线粒体生物能相关的基因方面具有多方面的作用。在这里,我们回顾了线粒体和氧化应激在PD病因中的作用以及PD中Nrf2信号传导与线粒体功能之间的潜在串扰。我们还为开发能够安全激活Nrf2途径以阻止PD患者神经退行性疾病发展的治疗方法提供了理由。然而,最近的进展显示,Nrf2在调节与炎症反应,代谢途径,蛋白质稳态,铁管理和线粒体生物能相关的基因方面具有多方面的作用。在这里,我们回顾了线粒体和氧化应激在PD病因中的作用以及PD中Nrf2信号传导与线粒体功能之间的潜在串扰。我们还为开发能够安全激活Nrf2途径以阻止PD患者神经退行性疾病发展的治疗方法提供了理由。然而,最近的进展显示,Nrf2在调节与炎症反应,代谢途径,蛋白质稳态,铁管理和线粒体生物能相关的基因方面具有多方面的作用。在这里,我们回顾了线粒体和氧化应激在PD病因中的作用以及PD中Nrf2信号与线粒体功能之间的潜在串扰。我们还为开发能够安全激活Nrf2途径以阻止PD患者神经退行性疾病发展的治疗方法提供了理由。在这里,我们回顾了线粒体和氧化应激在PD病因中的作用以及PD中Nrf2信号传导与线粒体功能之间的潜在串扰。我们还为安全激活Nrf2通路的治疗药物的开发提供了理由,以阻止PD患者神经退行性疾病的发展。在这里,我们回顾了线粒体和氧化应激在PD病因中的作用以及PD中Nrf2信号传导与线粒体功能之间的潜在串扰。我们还为开发能够安全激活Nrf2途径以阻止PD患者神经退行性疾病发展的治疗方法提供了理由。
更新日期:2019-10-20
down
wechat
bug