当前位置: X-MOL 学术Joule › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Advanced Hybrid Electrolyte Li-O2 Battery Realized by Dual Superlyophobic Membrane
Joule ( IF 38.6 ) Pub Date : 2019-10-15 , DOI: 10.1016/j.joule.2019.09.002
Yu Qiao , Qifei Wang , Xiaowei Mu , Han Deng , Ping He , Jihong Yu , Haoshen Zhou

Although water-in-salt (WiS) electrolyte has triggered a relatively clean Li2O2 redox reaction, the practical stored energy density and energy efficiency of current Li-O2 battery systems remains incomparable with that of the state-of-the-art Li-ion batteries. Besides, the awkward position of the cathodic stability limit of WiS further squeezes the practical output voltage. Herein, we make a breakthrough in this “output-voltage limitation” by adopting hybrid-electrolyte design into a dual-compartment cell architecture, in which the WiS catholyte and ionic liquid anolyte are segregated by a flexible under-liquid dual superlyophobic polymer membrane. Moreover, the boosted capacity and restrained overpotential are systematically ascribed to a solution-based Li2O2 accumulation-hydrolysis mechanism. Controlling with 3.6 V charging cut-off voltage, Li-O2 cell performs high areametric capacity (2.5 mAh/cm2), remarkable energy efficiency (∼0.47 V overpotential), and impressive long-term reversibility (Coulombic efficiency, 99.5%) over 250 cycles, which makes the Li-O2 battery technology really competitive.



中文翻译:

双超疏液膜实现的高级混合电解质Li-O 2电池

尽管盐包水(WiS)电解质已触发了相对清洁的Li 2 O 2氧化还原反应,但当前Li-O 2电池系统的实际存储能量密度和能效仍然与当前状态不相上下。锂离子电池。此外,WiS的阴极稳定性极限的尴尬位置进一步挤压了实际的输出电压。在这里,我们通过在双隔室电池结构中采用混合电解质设计,在“输出电压限制”方面取得了突破,其中WiS阴极电解质和离子液体阳极电解质被柔性的液下双超疏液聚合物膜隔离。此外,提高的容量和抑制的超电势被系统地归因于基于解决方案的锂电池。2 O 2的积累-水解机理。通过3.6 V充电截止电压进行控制,Li-O 2电池具有较高的面积容量(2.5 mAh / cm 2),出色的能源效率(〜0.47 V超电势)和令人印象深刻的长期可逆性(库仑效率,99.5%)超过250个循环,这使Li-O 2电池技术真正具有竞争力。

更新日期:2019-10-15
down
wechat
bug