当前位置: X-MOL 学术React. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A mathematical model of a slurry reactor for the direct synthesis of hydrogen peroxide
Reaction Chemistry & Engineering ( IF 3.4 ) Pub Date : 2019-10-11 , DOI: 10.1039/c9re00309f
Fabio Pizzetti 1, 2, 3, 4, 5 , Vittoria M. A. Granata 1, 2, 3, 4, 5 , Umberto Riva 1, 2, 3, 4, 5 , Filippo Rossi 1, 2, 3, 4, 5 , Maurizio Masi 1, 2, 3, 4, 5
Affiliation  

The direct synthesis of hydrogen peroxide represents a green alternative to the conventional large-scale anthraquinone process and offers a significantly economic advantageous way of producing a compound for which the global demand is ever increasing due to its multiple uses. However, the implementation of this process still faces important challenges regarding productivity, selectivity, and safety of this theoretically simple but practically not trivial reaction. In principle, we can smartly implement a process if we deeply know how the system and the reaction proceed. In this perspective, the importance of modeling the process itself becomes clear, and that is the purpose of this study: to develop a mathematical model for the direct synthesis of hydrogen peroxide in a continuous catalytic three-phase reactor. In particular, the fluid dynamic aspects of the system were studied, along with the kinetics and interphase mass exchange. Under our conditions, gas/liquid mass transfer prevailed, thus the reactor worked in a convective mass-transfer regime. Model equations were written and implemented in order to carry out different simulations and to obtain a first dimensioning of the reactor. It should be underlined that the definition of such a model can constitute a step forward and an opening of the doors for the industrial world to implement the direct synthesis of H2O2, ultimately helping make this process an effective industrial production.

中文翻译:

直接合成过氧化氢的淤浆反应器的数学模型

过氧化氢的直接合成代表了常规大规模蒽醌工艺的绿色替代方案,并提供了一种经济有效的生产化合物的方法,该化合物由于其多种用途而在全球范围内不断增长。然而,该方法的实施仍然面临关于生产率,选择性和安全性的重要挑战,这一理论上简单但实际上并非微不足道的反应。原则上,如果我们深入了解系统和反应的进行方式,则可以明智地实施流程。从这个角度看,对过程本身进行建模的重要性变得显而易见,这就是本研究的目的:开发一种在连续催化三相反应器中直接合成过氧化氢的数学模型。特别是,研究了系统的流体动力学方面,以及动力学和相间质量交换。在我们的条件下,气/液传质占主导,因此反应器在对流传质状态下工作。编写并执行了模型方程,以便进行不同的模拟并获得反应器的第一尺寸。应该强调的是,这种模型的定义可以构成向前迈出的一步,也可以为工业界实现H的直接合成打开大门。编写并执行了模型方程,以便进行不同的模拟并获得反应器的第一尺寸。应当强调的是,这种模型的定义可以构成向前迈出的一步,也为工业界实施氢的直接合成打开了大门。编写并执行了模型方程,以便进行不同的模拟并获得反应器的第一尺寸。应该强调的是,这种模型的定义可以构成向前迈出的一步,也可以为工业界实现H的直接合成打开大门。2 O 2,最终使该过程成为有效的工业生产。
更新日期:2019-10-11
down
wechat
bug