当前位置: X-MOL 学术Fungal Genet. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Two 14-3-3 proteins contribute to nitrogen sensing through the TOR and glutamine synthetase-dependent pathways in Fusarium graminearum.
Fungal Genetics and Biology ( IF 2.4 ) Pub Date : 2019-10-09 , DOI: 10.1016/j.fgb.2019.103277
Elizabeth K Brauer 1 , Nimrat Manes 2 , Christopher Bonner 1 , Rajagopal Subramaniam 2
Affiliation  

Fusarium graminearum responds to environmental cues to modulate its growth and metabolism during wheat pathogenesis. Nitrogen limitation activates virulence-associated behaviours in F. graminearum including mycotoxin production and penetrative growth. In other filamentous fungi, nitrogen sensing is mediated by both the Target of Rapamycin (TOR) and the glutamine synthetase (GS)-dependent signaling pathways. While TOR-dependent nitrogen responses have been demonstrated in F. graminearum, the involvement of GS remains unclear. Our study indicates that both the TOR and GS signalling pathways are involved in nitrogen sensing in F. graminearum and contribute to glutamine-induced mycelial growth. However, neither pathway is required for glutamine-induced repression of the mycotoxin deoxynivalenol (DON) indicating that an additional nitrogen sensing pathway must exist. Further, two genes FgBMH1 and FgBMH2 encoding 14-3-3 proteins regulate nitrogen responses with effects on gene expression, DON production and mycelial growth. Unlike yeast, where 14-3-3s function redundantly in regulating nitrogen sensing, the 14-3-3 proteins have differing functions in F. graminearum. While both FgBMH1 and FgBMH2 regulate early glutamine-induced DON repression, only FgBMH2 is involved in regulating reproduction, virulence and glutamine-induced AreA repression. Together, our findings help to clarify the nitrogen sensing pathways in F. graminearum and highlight the involvement of 14-3-3s in the nitrogen response of filamentous fungi.

中文翻译:

禾本科镰刀菌中的两个14-3-3蛋白通过TOR和谷氨酰胺合成酶依赖性途径促进了氮的感应。

禾谷镰孢对小麦发病过程中的环境线索作出反应,以调节其生长和代谢。氮限制激活了禾谷镰刀菌的毒力相关行为,包括霉菌毒素的产生和穿透性生长。在其他丝状真菌中,氮的感应是由雷帕霉素靶标(TOR)和谷氨酰胺合成酶(GS)依赖性信号传导途径介导的。虽然禾谷镰刀菌已经证明了TOR依赖性的氮响应,但尚不清楚GS的参与。我们的研究表明TOR和GS信号通路都参与了禾谷镰刀菌的氮感测,并促进了谷氨酰胺诱导的菌丝生长。然而,谷氨酰胺诱导的真菌毒素脱氧雪腐酚(DON)抑制均不需要这两种途径,这表明必须存在另外的氮感测途径。此外,编码14-3-3蛋白的两个基因FgBMH1和FgBMH2调节氮响应,影响基因表达,DON产生和菌丝体生长。与酵母不同,酵母中14-3-3在调节氮感测中起着多余的作用,而14-3-3蛋白在禾谷镰刀菌中具有不同的功能。虽然FgBMH1和FgBMH2均调节早期谷氨酰胺诱导的DON抑制,但只有FgBMH2参与调节生殖,毒力和谷氨酰胺诱导的AreA抑制。在一起,我们的发现有助于阐明禾谷镰刀菌的氮感测途径,并突出了14-3-3s与丝状真菌的氮响应有关。编码14-3-3蛋白的两个基因FgBMH1和FgBMH2调节氮响应,影响基因表达,DON产生和菌丝体生长。与酵母不同,在酵母中14-3-3在调节氮感中起着多余的作用,而14-3-3蛋白在禾谷镰刀菌中具有不同的功能。虽然FgBMH1和FgBMH2均调节早期谷氨酰胺诱导的DON抑制,但只有FgBMH2参与调节生殖,毒力和谷氨酰胺诱导的AreA抑制。在一起,我们的发现有助于阐明禾谷镰刀菌的氮感测途径,并突出了14-3-3s与丝状真菌的氮响应有关。编码14-3-3蛋白的两个基因FgBMH1和FgBMH2调节氮响应,影响基因表达,DON产生和菌丝体生长。与酵母不同,酵母中14-3-3在调节氮感测中起着多余的作用,而14-3-3蛋白在禾谷镰刀菌中具有不同的功能。虽然FgBMH1和FgBMH2均调节早期谷氨酰胺诱导的DON抑制,但只有FgBMH2参与调节生殖,毒力和谷氨酰胺诱导的AreA抑制。在一起,我们的发现有助于阐明禾谷镰刀菌的氮感测途径,并突出了14-3-3s与丝状真菌的氮响应有关。14-3-3在冗余氮调节中起着多余的作用,而14-3-3蛋白在禾谷镰刀菌中具有不同的功能。虽然FgBMH1和FgBMH2均调节早期谷氨酰胺诱导的DON抑制,但只有FgBMH2参与调节生殖,毒力和谷氨酰胺诱导的AreA抑制。在一起,我们的发现有助于阐明禾谷镰刀菌的氮感测途径,并突出了14-3-3s与丝状真菌的氮响应有关。14-3-3在调节氮感测中起着多余的作用,而14-3-3蛋白在禾谷镰刀菌中具有不同的功能。虽然FgBMH1和FgBMH2均调节早期谷氨酰胺诱导的DON抑制,但只有FgBMH2参与调节生殖,毒力和谷氨酰胺诱导的AreA抑制。在一起,我们的发现有助于阐明禾谷镰刀菌的氮感测途径,并突出了14-3-3s与丝状真菌的氮响应有关。
更新日期:2019-10-09
down
wechat
bug