当前位置: X-MOL 学术Nat. Photon. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Broadband reduction of quantum radiation pressure noise via squeezed light injection
Nature Photonics ( IF 32.3 ) Pub Date : 2019-10-07 , DOI: 10.1038/s41566-019-0527-y
Min Jet Yap , Jonathan Cripe , Georgia L. Mansell , Terry G. McRae , Robert L. Ward , Bram J. J. Slagmolen , Paula Heu , David Follman , Garrett D. Cole , Thomas Corbitt , David E. McClelland

The Heisenberg uncertainty principle states that the position of an object cannot be known with infinite precision, as the momentum of the object would then be totally uncertain. This momentum uncertainty then leads to position uncertainty in future measurements. When continuously measuring the position of an object, this quantum effect, known as back-action, limits the achievable precision1,2. In audio-band, interferometer-type gravitational-wave detectors, this back-action effect manifests as quantum radiation pressure noise (QRPN) and will ultimately (but does not yet) limit sensitivity3. Here, we present the use of a quantum engineered state of light to directly manipulate this quantum back-action in a system where it dominates the sensitivity in the 10–50 kHz range. We observe a reduction of 1.2 dB in the quantum back-action noise. This experiment is a crucial step in realizing QRPN reduction for future interferometric gravitational-wave detectors and improving their sensitivity.



中文翻译:

通过压缩光注入宽带降低量子辐射压力噪声

海森堡不确定性原理指出,无法无限精确地知道物体的位置,因为物体的动量将是完全不确定的。然后,这种动量不确定性导致将来测量中的位置不确定性。当连续测量物体的位置时,这种量子效应(称为反作用)限制了可达到的精度1,2。在音频带,干涉仪式重力波检测器中,这种反作用效应表现为量子辐射压力噪声(QRPN),最终(但尚未)限制灵敏度3。在这里,我们介绍了使用光的量子工程状态来直接操纵系统中的量子反向作用,该系统在10–50 kHz范围内支配灵敏度。我们观察到量子背向噪声降低了1.2 dB。该实验是实现减少QRPN降低未来干涉式重力波探测器并提高其灵敏度的关键步骤。

更新日期:2019-10-07
down
wechat
bug