当前位置: X-MOL 学术Comput. Theor. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Oxygen reduction reaction on TiO2 rutile (1 1 0) surface in the presence of bridging hydroxyl groups
Computational and Theoretical Chemistry ( IF 3.0 ) Pub Date : 2019-10-04 , DOI: 10.1016/j.comptc.2019.112607
Ádám Ganyecz , Pál D. Mezei , Mihály Kállay

The goal of this study is to provide insight into the mechanism of the oxygen reduction reaction on the TiO2 rutile (1 1 0) surface in the presence of bridging hydroxyl groups. Considering the Langmuir–Hinshelwood and Eley–Rideal mechanisms, each possible intermediate was identified using density functional theory and a cluster model along with the energy barriers of the reduction steps and the OO bond breaking. Our results show that the initial step, the O2 adsorption on the surface, is favored compared to the pure surface. At higher potentials, the oxygen reduction reaction was found to go through the formation of HO2, which can easily convert to two terminal hydroxyl groups. The rate-limiting step is the desorption of the first H2O with 0.58 eV energy requirement at zero applied potential, while at 1.23 V the reduction of the adsorbed OH to form H2O is the bottleneck with a barrier height of 1.71 eV.



中文翻译:

桥连羟基存在下TiO 2金红石(1 1 0)表面的氧还原反应

这项研究的目的是在存在桥连羟基的情况下,洞悉TiO 2金红石(1 1 0)表面上的氧还原反应的机理。考虑到Langmuir-Hinshelwood和Eley-Rideal机理,使用密度泛函理论和聚类模型以及还原步骤和O O键断裂的能垒,确定了每种可能的中间体。我们的结果表明,与纯表面相比,初始步骤(表面上的O 2吸附)更为有利。在较高的电势下,发现氧还原反应经历了HO 2的形成,该HO 2可以轻松转化为两个末端羟基。限速步骤是第一H 2的解吸在零施加电势下具有0.58 eV能量需求的O,而在1.23 V时,被吸附的OH还原形成H 2 O的障碍是势垒高度为1.71 eV的瓶颈。

更新日期:2019-10-04
down
wechat
bug