当前位置: X-MOL 学术Light Sci. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities
Light: Science & Applications ( IF 20.6 ) Pub Date : 2019-10-02 , DOI: 10.1038/s41377-019-0194-2
Yijie Shen , Xuejiao Wang , Zhenwei Xie , Changjun Min , Xing Fu , Qiang Liu , Mali Gong , Xiaocong Yuan

Thirty years ago, Coullet et al. proposed that a special optical field exists in laser cavities bearing some analogy with the superfluid vortex. Since then, optical vortices have been widely studied, inspired by the hydrodynamics sharing similar mathematics. Akin to a fluid vortex with a central flow singularity, an optical vortex beam has a phase singularity with a certain topological charge, giving rise to a hollow intensity distribution. Such a beam with helical phase fronts and orbital angular momentum reveals a subtle connection between macroscopic physical optics and microscopic quantum optics. These amazing properties provide a new understanding of a wide range of optical and physical phenomena, including twisting photons, spin–orbital interactions, Bose–Einstein condensates, etc., while the associated technologies for manipulating optical vortices have become increasingly tunable and flexible. Hitherto, owing to these salient properties and optical manipulation technologies, tunable vortex beams have engendered tremendous advanced applications such as optical tweezers, high-order quantum entanglement, and nonlinear optics. This article reviews the recent progress in tunable vortex technologies along with their advanced applications.



中文翻译:

30年后的光学涡旋:从拓扑电荷到多重奇点的OAM操作

三十年前,Coullet等人。他提出在激光腔中存在一个特殊的光场,类似于超流体涡旋。从那时起,在流体动力学共享相似数学的启发下,对光学涡旋进行了广泛的研究。类似于具有中心流动奇点的流体涡旋,光学涡旋光束具有带有一定拓扑电荷的相位奇点,从而产生了中空强度分布。这种具有螺旋相前锋和轨道角动量的光束揭示了宏观物理光学和微观量子光学之间的微妙联系。这些惊人的特性使人们对各种光学和物理现象有了新的认识,包括扭曲光子,自旋-轨道相互作用,玻色-爱因斯坦凝聚物等。而用于操纵光学涡旋的相关技术已变得越来越可调谐和灵活。迄今为止,由于这些显着的特性和光学操纵技术,可调谐涡旋光束已产生了巨大的先进应用,例如光学镊子,高阶量子纠缠和非线性光学。本文回顾了可调涡旋技术及其先进应用的最新进展。

更新日期:2019-10-02
down
wechat
bug