当前位置: X-MOL 学术Int. J. Multiphase Flow › 论文详情
A new approach to include surface tension in the subgrid eddy viscosity for the two-phase LES
International Journal of Multiphase Flow ( IF 2.829 ) Pub Date : 2019-10-01 , DOI: 10.1016/j.ijmultiphaseflow.2019.103128
Mahdi Saeedipour, Simon Schneiderbauer

Turbulent two-phase flows feature different mechanisms for production and dissipation of turbulent kinetic energy compared to the single-phase flows. However, this difference is usually neglected in developing eddy viscosity-based subgrid scale (SGS) models for the two-phase large eddy simulation (LES). In this study, a new approach is presented for the two-phase LES to include the surface tension, which is a production mechanism for the kinetic energy in the small scale motions, into the subgrid eddy viscosity model. We follow the Favre-filtered governing equations of interfacial flows based on the volume of fluid (VOF) approach and derive the transport equation for the turbulent kinetic energy to include the effect of surface tension. The original contribution of this study is to propose a new form for the eddy viscosity based on the mixing length assumption which includes an additional production mechanism of turbulent kinetic energy stemming from the interfacial work i.e. surface tension. The proposed model for eddy viscosity is employed to close all the SGS terms. The model performance is evaluated by means of the a-priori filtering of the fine grid simulation of phase inversion problem. To test the generality of the model at different physical conditions, two different density ratios were considered for the fine grid simulation. The results highlight a significant improvement of the eddy viscosity-based SGS models in prediction of the turbulent kinetic energy for the small unresolved scales particularly for the regions of low shear. Furthermore, the model appears to perform more accurately in the case of low density ratios. This study provides a proper perspective for future SGS models in the context of large eddy simulation of two-phase flows.
更新日期:2019-10-02

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug