当前位置: X-MOL 学术Phys. Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
First-principles design of strong solids: Approaches and applications
Physics Reports ( IF 23.9 ) Pub Date : 2019-09-01 , DOI: 10.1016/j.physrep.2019.09.004
R.F. Zhang , S.H. Zhang , Y.Q. Guo , Z.H. Fu , D. Legut , T.C. Germann , S. Veprek

Abstract In the design of strong solids, especially hard and superhard materials, this review article attempts to critically cover an extended field of first-principles derived mechanical properties by considering both intrinsic (i.e., crystal structures, bonding nature and strength) and extrinsic (i.e., nanostructures and interface characteristics) parameters. For the intrinsic parameters, firstly, the bonding topology and nature, elastic property and ductility–brittleness criterion provide critical physics on the understanding of the mechanical response of a crystal. Secondly, the ideal strength model, the generalized stacking fault energy model, and ab initio informed Peierls–Nabarro model uniquely quantify the fracture and plastic resistance of a crystal. Taking the extrinsic parameters into further consideration, the recent progress of first-principles investigations on the mechanical behavior of nanostructured solids and heterogeneous interfaces is selectively reviewed, targeted as the origin and/or carrier of the fracture or plastic deformation. These extrinsic parameters include the work of adhesion, the critical stresses for interfacial cleavage and glide and so on. Finally, by classifying the strong solids into intrinsically and extrinsically hard/superhard materials, two different rules are proposed: (1) three-dimensional short covalent bond networks with sufficiently high ideal strength and Peierls resistance and (2) nanosized crystallites/layers glued by strongly bonded thin interfaces.

中文翻译:

强固体的第一性原理设计:方法和应用

摘要 在强固体的设计中,特别是硬和超硬材料的设计中,这篇评论文章试图通过考虑内在(即晶体结构、键合性质和强度)和外在(即、纳米结构和界面特性)参数。对于内在参数,首先,键合拓扑和性质、弹性特性和延性-脆性标准为理解晶体的机械响应提供了关键物理学。其次,理想强度模型、广义堆垛层错能量模型和从头计算的 Peierls-Nabarro 模型唯一地量化了晶体的断裂和塑性阻力。进一步考虑外部参数,选择性地回顾了关于纳米结构固体和异质界面机械行为的第一性原理研究的最新进展,目标是断裂或塑性变形的起源和/或载体。这些外在参数包括粘附功、界面解理和滑动的临界应力等。最后,通过将强固体分为内在和外在硬/超硬材料,提出了两种不同的规则:(1)具有足够高的理想强度和 Peierls 电阻的三维短共价键网络;(2)由紧密结合的薄界面。目标为断裂或塑性变形的起源和/或载体。这些外在参数包括粘附功、界面解理和滑动的临界应力等。最后,通过将强固体分为内在和外在硬/超硬材料,提出了两种不同的规则:(1)具有足够高的理想强度和 Peierls 电阻的三维短共价键网络;(2)由紧密结合的薄界面。目标为断裂或塑性变形的起源和/或载体。这些外在参数包括粘附功、界面解理和滑动的临界应力等。最后,通过将强固体分为内在和外在硬/超硬材料,提出了两种不同的规则:(1)具有足够高的理想强度和 Peierls 电阻的三维短共价键网络;(2)由紧密结合的薄界面。
更新日期:2019-09-01
down
wechat
bug