当前位置: X-MOL 学术Batteries Supercaps › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structurally Folded Curvature Surface Models of Geodes/Agate Rosettes (Cathode/Anode) as Vehicle/Truck Storage for High Energy Density Lithium‐Ion Batteries
Batteries & Supercaps ( IF 5.1 ) Pub Date : 2019-11-05 00:00:00 , DOI: 10.1002/batt.201900083
Hesham Khalifa 1, 2 , Sherif A. El‐Safty 1 , Abdullah Reda 1 , Mohamed A. Shenashen 1 , Ahmed Elmarakbi 3 , Hussain A. Metawa 2
Affiliation  

The synchronized development of low cost, high energy density, full‐scale lithium‐ion battery (LIB) vehicle/truck storages with long charge/discharge cycles, long‐term stability, and excellent rate capacity and Coulombic efficiency is crucial. Here, structurally folded curvature surface cathode/anode models were designated as vehicle/truck storages. The modulation of LIB vehicle folds with diverse surface functions such as cave‐in‐hollow nests, shell‐walled/fenced edges, and convex/concave spheroid‐capped gradients of geode (G)/agate rosette (AR) (cathode/anode) electrodes may be used as leverage to motivate the dynamic mobility of electron‐ion motion systems directly and generate vehicle/truck storage loading on sustainable electrode surface geometrics, leading to long‐term charge/discharge cycles. In this vehicle/truck storage design, evidence of the effect of structurally folded curvature surface models on the creation of anode/cathode designs is first reported as the force‐driven modulation of high energy density of full‐scale G‐cathode//AR‐anode LIBs. The built‐in LIB is formulated with structurally shaped spheroids along whole‐, eroded‐, and unopened G‐cathodes and AR‐anodes that exhibit the effect of the remarkable surface curvature function changes on fabrication of well‐defined geometric LIBs. The building design of G‐cathode//AR‐anode LIBs with a bundle of convex/concave spheroid‐capped gradients, and three‐dimensional (3D) surface curvatures offer a massive gate‐in transport of electrons/Li+ ions for long periods of charge/discharge cycles and outstanding discharge capacities. Outstanding long‐term cycling performance and stability, excellent retention capacity ∼85 % with a first discharge specific capacity of 162.5 mAh g−1 and an approximate Coulombic efficiency of 99.7 %, were obtained after 2000 cycles at a rate of 1 C in a potential region from 0.8 V to 3.5 V versus Li/Li+ at room temperature by using 3D super‐scalable G@C//AR@C built‐in full‐scale LIB models. A high value of specific energy density ≈131.6 Wh kg−1. The full‐scale LIB models may offer all mandatory requirements overcoming the energy density limits that required a driving range of long‐term EVs.

中文翻译:

用于高能量密度锂离子电池的车辆/卡车存储的Geodes / Agate Rosettes(阴极/阳极)的结构折叠曲率表面模型

低成本,高能量密度,全尺寸锂离子电池(LIB)车载/卡车存储,长充电/放电周期,长期稳定性以及出色的倍率容量和库仑效率的同步开发至关重要。在此,将结构折叠的曲率表面的阴极/阳极模型指定为车辆/卡车存储库。LIB车辆折叠的调制具有多种表面功能,例如空心窝,壳壁/有栅栏的边缘以及大地(G)/玛瑙花环(AR)(阴极/阳极)的凸/凹球体渐变梯度电极可用作直接激发电子离子运动系统的动态迁移率的工具,并在可持续的电极表面几何形状上产生车辆/卡车的存储负荷,从而导致长期的充电/放电循环。在这种车辆/卡车存放设计中,关于结构折叠曲率表面模型对阳极/阴极设计的影响的证据首先被报道为全尺寸G阴极// AR阳极LIB的高能量密度的力驱动调制。内置的LIB沿整个,腐蚀的和未打开的G阴极和AR阳极由结构形状的球体组成,这些球体在制造清晰的几何LIB时表现出显着的表面曲率函数变化。G阴极// AR阳极LIB的建筑设计具有一堆凸/凹球体顶峰梯度,并且三维(3D)表面曲率提供了电子/ Li的大规模门禁传输 内置的LIB沿整个,腐蚀的和未打开的G阴极和AR阳极由结构形状的球体组成,这些球体在制造清晰的几何LIB时表现出显着的表面曲率函数变化。G阴极// AR阳极LIB的建筑设计具有一堆凸/凹球体顶峰梯度,并且三维(3D)表面曲率提供了电子/ Li的大规模门禁传输 内置的LIB沿整个,腐蚀的和未打开的G阴极和AR阳极由结构形状的球体组成,这些球体在制造清晰的几何LIB时表现出显着的表面曲率函数变化。G阴极// AR阳极LIB的建筑设计具有一堆凸/凹球体顶峰梯度,并且三维(3D)表面曲率提供了电子/ Li的大规模门禁传输+离子可长时间充电/放电,并具有出色的放电容量。出色的长期循环性能和稳定性,以1 C的速度经过2000次循环后,获得了出色的保持能力〜85%,首次放电比容量为162.5 mAh g -1和大约99.7%的库仑效率。通过使用3D超可扩展G @ C // AR @ C内置满量程LIB模型,室温下的Li / Li +在0.8 V至3.5 V范围内变化。比能量密度的高值≈131.6Wh kg -1。完整的LIB模型可能会提供所有克服能量密度极限的强制性要求,而能量密度极限则需要长期电动汽车的行驶范围。
更新日期:2019-11-06
down
wechat
bug