当前位置: X-MOL 学术Phys. Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Silicon strip and pixel detectors for particle physics experiments
Physics Reports ( IF 23.9 ) Pub Date : 2019-10-01 , DOI: 10.1016/j.physrep.2019.09.003
Sally Seidel

Abstract Following a brief introduction to the roles that a tracking detector fulfills in a particle physics experiment, the concept of a silicon tracking detector is introduced. The contributors to position resolution of the detector are described along with some technological developments that have occurred in response to them. An overview of the historical evolution of the silicon detector concept follows, with emphasis on what was learned at significant junctures. A light reminder of foundational concepts related to semiconductors and p - n junctions is provided, in order to motivate various choices that have been made in the implementation of sensor geometries; advantages and disadvantages of some key implementations are mentioned. The characteristics of an operating detector are described, as are the typical experimental goals that influence decisions on detector optimization. Due to its pervasive effect on nearly all detector characteristics, the mechanisms and vocabulary of radiation damage are introduced. Features of the classic silicon detector design that have been developed to mitigate that damage are described, and the evolution of the design toward higher radiation tolerance is indicated. The concept of the module is introduced, for strip detectors and pixel detectors. Design considerations for detector cooling, interconnections, power distribution, and support are mentioned. Various approaches to monolithic pixel detectors are described and contrasted with hybrid detectors. A look at the research frontier leads to low gain avalanche detectors and small-cell 3D detectors.

中文翻译:

用于粒子物理实验的硅带和像素探测器

摘要 在简要介绍了跟踪探测器在粒子物理实验中的作用之后,介绍了硅跟踪探测器的概念。描述了探测器位置分辨率的影响因素以及响应它们的一些技术发展。下面概述了硅探测器概念的历史演变,重点是在重要时刻学到的东西。提供了与半导体和 p-n 结相关的基本概念的简要提示,以激发在实施传感器几何结构时做出的各种选择;提到了一些关键实现的优点和缺点。描述了操作检测器的特性,影响检测器优化决策的典型实验目标也是如此。由于其对几乎所有探测器特性的普遍影响,本文介绍了辐射损伤的机制和词汇。描述了为减轻这种损害而开发的经典硅探测器设计的特征,并指出了设计向更高辐射耐受性的演变。引入了模块的概念,用于条形探测器和像素探测器。提到了探测器冷却、互连、配电和支持的设计注意事项。描述了单片像素检测器的各种方法,并与混合检测器进行了对比。研究前沿导致低增益雪崩探测器和小单元 3D 探测器。由于其对几乎所有探测器特性的普遍影响,本文介绍了辐射损伤的机制和词汇。描述了为减轻这种损害而开发的经典硅探测器设计的特征,并指出了设计向更高辐射耐受性的演变。引入了模块的概念,用于条形探测器和像素探测器。提到了探测器冷却、互连、配电和支持的设计注意事项。描述了单片像素检测器的各种方法,并与混合检测器进行了对比。研究前沿导致低增益雪崩探测器和小单元 3D 探测器。由于其对几乎所有探测器特性的普遍影响,本文介绍了辐射损伤的机制和词汇。描述了为减轻这种损害而开发的经典硅探测器设计的特征,并指出了设计向更高辐射耐受性的演变。引入了模块的概念,用于条形探测器和像素探测器。提到了探测器冷却、互连、配电和支持的设计注意事项。描述了单片像素检测器的各种方法,并与混合检测器进行了对比。研究前沿导致低增益雪崩探测器和小单元 3D 探测器。描述了为减轻这种损害而开发的经典硅探测器设计的特征,并指出了设计向更高辐射耐受性的演变。引入了模块的概念,用于条形探测器和像素探测器。提到了探测器冷却、互连、配电和支持的设计注意事项。描述了单片像素检测器的各种方法,并与混合检测器进行了对比。研究前沿导致低增益雪崩探测器和小单元 3D 探测器。描述了为减轻这种损害而开发的经典硅探测器设计的特征,并指出了设计向更高辐射耐受性的演变。引入模块的概念,用于条形探测器和像素探测器。提到了探测器冷却、互连、配电和支持的设计注意事项。描述了单片像素检测器的各种方法,并与混合检测器进行了对比。研究前沿导致低增益雪崩探测器和小单元 3D 探测器。提到了探测器冷却、互连、配电和支持的设计注意事项。描述了单片像素检测器的各种方法,并与混合检测器进行了对比。研究前沿导致低增益雪崩探测器和小单元 3D 探测器。提到了探测器冷却、互连、配电和支持的设计注意事项。描述了单片像素检测器的各种方法,并与混合检测器进行了对比。研究前沿导致低增益雪崩探测器和小单元 3D 探测器。
更新日期:2019-10-01
down
wechat
bug