当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Recent Advanced Materials for Electrochemical and Photoelectrochemical Synthesis of Ammonia from Dinitrogen: One Step Closer to a Sustainable Energy Future
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2019-09-23 , DOI: 10.1002/aenm.201902020
Zihao Yan 1 , Mengxia Ji 2 , Jiexiang Xia 2 , Huiyuan Zhu 1
Affiliation  

Ammonia (NH3), an important raw material for chemical industry and agriculture, is also considered to be an intriguing energy storage and transportation media for chemical conversion schemes. The world's primary NH3 supply is based on the natural nitrogen fixation by diazotrophs through an enzymatic nitrogenase process and the industrial nitrogen fixation through a traditional Haber–Bosch process. The natural synthesis of NH3 can hardly meet the rapidly growing global demand. Meanwhile, the industrial NH3 production is still dominated by the high‐temperature and high‐pressure reaction between nitrogen and hydrogen (N2 + 3H2 → 2NH3), requiring intensive energy input and generating massive CO2. Therefore, seeking a breakthrough in the development of catalysts toward efficient ammonia synthesis has become the frontier of energy and chemical conversion schemes. This review summarizes and discusses the recent progress on developing new strategies to optimize the efficiency of NH3 production coupled with renewable energy sources, with a specific focus on electrocatalytic and photoelectrocatalytic conversion of N2 to NH3. The most recent advances in the development of catalytic materials, the design of the reaction systems, and the computational insights for electrochemical and photoelectrochemical ammonia synthesis are covered.

中文翻译:

最新的用于从氮气中进行电化学和光电化学合成氨的先进材料:距离可持续能源未来更近一步

氨(NH 3)是化学工业和农业的重要原料,也被认为是化学转化方案中一种引人入胜的能量存储和运输介质。全球主要的NH 3供应基于重氮营养菌通过酶促固氮酶过程进行的自然固氮作用以及通过传统的Haber-Bosch过程进行的工业固氮作用。NH 3的天然合成几乎不能满足快速增长的全球需求。同时,工业NH 3的生产仍主要由氮与氢之间的高温高压反应(N 2 + 3H 2 →2NH 3),需要大量的能量输入并产生大量的CO 2。因此,寻求在催化剂开发上朝着有效合成氨的突破已经成为能量和化学转化方案的前沿。这篇综述总结并讨论了开发新策略以优化NH 3的生产效率以及可再生能源的最新进展,特别是将N 2转化为NH 3的电催化和光电催化。涵盖了催化材料开发,反应系统设计以及电化学和光电化学氨合成的计算见解的最新进展。
更新日期:2020-03-19
down
wechat
bug