当前位置: X-MOL 学术Int. J. Heat Fluid Flow › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Direct numerical simulation of Taylor–Couette turbulent flow controlled by a traveling wave-like blowing and suction
International Journal of Heat and Fluid Flow ( IF 2.6 ) Pub Date : 2019-12-01 , DOI: 10.1016/j.ijheatfluidflow.2019.108463
K. Ogino , H. Mamori , N. Fukushima , K. Fukudome , M. Yamamoto

Abstract In wall turbulence, a traveling wave-like control is known to decrease the skin-friction drag and induce the relaminarization phenomenon. Because it is noteworthy to investigate the control effect in other canonical flows, direct numerical simulations of fully developed turbulent Taylor–Couette flows are performed. The Reynolds number, based on the wall velocity of a rotating inner cylinder and the radius of a centerline between cylinders, is set to 84,000. The traveling wave-like blowing and suction is imposed on the inner or outer cylinder wall, and the control effect is parametrically investigated. In the inner cylinder control, the torque reduction is obtained when the wave travels in the co-rotating direction with the inner cylinder, and its wavespeed is faster than the rotation. In the outer cylinder control, in contrast, the torque reduction is obtained when the wave propagates in the opposite direction. While the control is imposed on one side wall (i.e., inner or outer cylinder), the control affects the entire flow region. The Taylor vortex remains, while the traveling wave affects its strength. The three-component decomposition analysis shows that the traveling wave creates the coherent contribution on the torque, while the random contribution on it is reduced. Accordingly, a major factor of the torque reduction in the Taylor–Couette flow is the reduction of the random contribution. In addition, for the faster wavespeed cases with the small wavenumber (i.e., the long wavelength), the drag reduction larger than 60% is obtained and the relaminarization occurs in these cases.

中文翻译:

行波式吹吸控制的 Taylor-Couette 湍流直接数值模拟

摘要 在壁面湍流中,已知行波状控制可以减少表面摩擦阻力并引起再分层现象。因为值得注意的是研究其他规范流中的控制效果,所以对完全发展的湍流 Taylor-Couette 流进行了直接数值模拟。雷诺数基于旋转内圆柱的壁速度和圆柱之间的中心线半径,设置为 84,000。对内外缸壁施加行波状吹吸,并对其控制效果进行参数研究。在内筒控制中,当波浪沿与内筒同向旋转的方向行进时获得转矩减小,其波速大于旋转。相比之下,在外筒控制中,当波沿相反方向传播时,扭矩减小。当控制强加在一个侧壁上(即内筒或外筒)时,控制会影响整个流动区域。泰勒涡流仍然存在,而行波会影响其强度。三分量分解分析表明,行波对转矩产生相干贡献,而对其的随机贡献减少。因此,Taylor-Couette 流中扭矩减少的一个主要因素是随机贡献的减少。此外,对于小波数(即长波长)的较快波速情况,获得大于60%的减阻并且在这些情况下发生重新分层。当控制强加在一个侧壁上(即内筒或外筒)时,控制会影响整个流动区域。泰勒涡流仍然存在,而行波会影响其强度。三分量分解分析表明,行波对转矩产生相干贡献,而对其的随机贡献减少。因此,Taylor-Couette 流中扭矩减少的一个主要因素是随机贡献的减少。此外,对于小波数(即长波长)的较快波速情况,获得大于60%的减阻并且在这些情况下发生重新分层。当控制强加在一个侧壁上(即内筒或外筒)时,控制会影响整个流动区域。泰勒涡流仍然存在,而行波会影响其强度。三分量分解分析表明,行波对转矩产生相干贡献,而对其的随机贡献减少。因此,Taylor-Couette 流中扭矩减少的一个主要因素是随机贡献的减少。此外,对于小波数(即长波长)的较快波速情况,获得大于60%的减阻并且在这些情况下发生重新分层。而行波会影响其强度。三分量分解分析表明,行波对转矩产生相干贡献,而对其的随机贡献减少。因此,Taylor-Couette 流中扭矩减少的一个主要因素是随机贡献的减少。此外,对于小波数(即长波长)的较快波速情况,获得大于60%的减阻并且在这些情况下发生重新分层。而行波会影响其强度。三分量分解分析表明,行波对转矩产生相干贡献,而对其的随机贡献减少。因此,Taylor-Couette 流中扭矩减少的一个主要因素是随机贡献的减少。此外,对于小波数(即长波长)的较快波速情况,获得大于60%的减阻并且在这些情况下发生重新分层。
更新日期:2019-12-01
down
wechat
bug