当前位置:
X-MOL 学术
›
J. Magn. Magn. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Bi-YIG Ferrimagnetic Insulator Nanometer Films with Large Perpendicular Magnetic Anisotropy and Narrow Ferromagnetic Resonance Linewidth
Journal of Magnetism and Magnetic Materials ( IF 2.5 ) Pub Date : 2020-02-01 , DOI: 10.1016/j.jmmm.2019.165886 Yaning Lin , Lichuan Jin , Huaiwu Zhang , Zhiyong Zhong , Qinghui Yang , Yiheng Rao , Mingming Li
Journal of Magnetism and Magnetic Materials ( IF 2.5 ) Pub Date : 2020-02-01 , DOI: 10.1016/j.jmmm.2019.165886 Yaning Lin , Lichuan Jin , Huaiwu Zhang , Zhiyong Zhong , Qinghui Yang , Yiheng Rao , Mingming Li
Abstract Ferrimagnetic insulator Bismuth-substituted YIG (Bi1Y2IG) thin films with thickness from 8.2 nm to 31.7 nm and roughness smaller than 0.5 nm have been grown on substituted Gd3Ga5O12 (sGGG) substrate by pulsed laser deposition (PLD). A comprehensive description of the structural characteristics and magnetic properties of Bi-YIG films were given. Thickness-dependent large perpendicular magnetic anisotropy (PMA) was induced in Bi-YIG films by tensile strain originate from lattice mismatch. MOKE and VSM results showed that the 8.2 nm and 17.8 nm film has large PMA, high squareness and small out-of-plane coercivity with a saturation magnetization of 115 emu/cm3. However, with the increasing of film thickness, the easy axis turned from out-of-plane to in-plane. The thickness-dependent PMA indicated that the increase in PMA was caused by the interfacial strain. Furthermore, the Dzyaloshinskii–Moriya interaction (DMI), which is proportional to the strength of spin orbit coupling could also contribute to the increasing of PMA. First-principles calculations were adopted to study the elastic properties of Bi-YIG films. It showed that the Young’s modulus of Bi-YIG increased to 225 GPa, which giving a larger Kuλ than un-doped YIG films under same strain. The measured peak to peak linewidth ΔH of Bi-YIG film with PMA is 20 Oe for fields out-of-plane. The derived Gilbert damping constant is 7.03 × 10−4, indicating a low magnetic loss.
中文翻译:
具有大垂直磁各向异性和窄铁磁谐振线宽的双YIG铁磁绝缘体纳米薄膜
摘要 通过脉冲激光沉积 (PLD) 在取代的 Gd3Ga5O12 (sGGG) 衬底上生长了厚度为 8.2 nm 至 31.7 nm 且粗糙度小于 0.5 nm 的亚铁磁绝缘体铋取代 YIG (Bi1Y2IG) 薄膜。对Bi-YIG薄膜的结构特征和磁性能进行了全面的描述。通过源自晶格失配的拉伸应变在 Bi-YIG 薄膜中诱导厚度相关的大垂直磁各向异性 (PMA)。MOKE和VSM结果表明,8.2 nm和17.8 nm薄膜具有大PMA、高矩形度和小面外矫顽力,饱和磁化强度为115 emu/cm3。然而,随着薄膜厚度的增加,易轴从面外变为面内。厚度相关的 PMA 表明 PMA 的增加是由界面应变引起的。此外,与自旋轨道耦合强度成正比的 Dzyaloshinskii-Moriya 相互作用(DMI)也有助于增加 PMA。采用第一性原理计算来研究 Bi-YIG 薄膜的弹性性能。结果表明,Bi-YIG 的杨氏模量增加到 225 GPa,在相同应变下比未掺杂的 YIG 薄膜产生更大的 Kuλ。对于面外场,具有 PMA 的 Bi-YIG 膜的测量峰到峰线宽 ΔH 为 20 Oe。导出的吉尔伯特阻尼常数为 7.03 × 10−4,表明磁损耗低。采用第一性原理计算来研究 Bi-YIG 薄膜的弹性性能。结果表明,Bi-YIG 的杨氏模量增加到 225 GPa,在相同应变下比未掺杂的 YIG 薄膜产生更大的 Kuλ。对于面外场,具有 PMA 的 Bi-YIG 膜的测量峰到峰线宽 ΔH 为 20 Oe。导出的吉尔伯特阻尼常数为 7.03 × 10−4,表明磁损耗低。采用第一性原理计算来研究 Bi-YIG 薄膜的弹性性能。结果表明,Bi-YIG 的杨氏模量增加到 225 GPa,在相同应变下比未掺杂的 YIG 薄膜产生更大的 Kuλ。对于面外场,具有 PMA 的 Bi-YIG 膜的测量峰到峰线宽 ΔH 为 20 Oe。导出的吉尔伯特阻尼常数为 7.03 × 10−4,表明磁损耗低。
更新日期:2020-02-01
中文翻译:
具有大垂直磁各向异性和窄铁磁谐振线宽的双YIG铁磁绝缘体纳米薄膜
摘要 通过脉冲激光沉积 (PLD) 在取代的 Gd3Ga5O12 (sGGG) 衬底上生长了厚度为 8.2 nm 至 31.7 nm 且粗糙度小于 0.5 nm 的亚铁磁绝缘体铋取代 YIG (Bi1Y2IG) 薄膜。对Bi-YIG薄膜的结构特征和磁性能进行了全面的描述。通过源自晶格失配的拉伸应变在 Bi-YIG 薄膜中诱导厚度相关的大垂直磁各向异性 (PMA)。MOKE和VSM结果表明,8.2 nm和17.8 nm薄膜具有大PMA、高矩形度和小面外矫顽力,饱和磁化强度为115 emu/cm3。然而,随着薄膜厚度的增加,易轴从面外变为面内。厚度相关的 PMA 表明 PMA 的增加是由界面应变引起的。此外,与自旋轨道耦合强度成正比的 Dzyaloshinskii-Moriya 相互作用(DMI)也有助于增加 PMA。采用第一性原理计算来研究 Bi-YIG 薄膜的弹性性能。结果表明,Bi-YIG 的杨氏模量增加到 225 GPa,在相同应变下比未掺杂的 YIG 薄膜产生更大的 Kuλ。对于面外场,具有 PMA 的 Bi-YIG 膜的测量峰到峰线宽 ΔH 为 20 Oe。导出的吉尔伯特阻尼常数为 7.03 × 10−4,表明磁损耗低。采用第一性原理计算来研究 Bi-YIG 薄膜的弹性性能。结果表明,Bi-YIG 的杨氏模量增加到 225 GPa,在相同应变下比未掺杂的 YIG 薄膜产生更大的 Kuλ。对于面外场,具有 PMA 的 Bi-YIG 膜的测量峰到峰线宽 ΔH 为 20 Oe。导出的吉尔伯特阻尼常数为 7.03 × 10−4,表明磁损耗低。采用第一性原理计算来研究 Bi-YIG 薄膜的弹性性能。结果表明,Bi-YIG 的杨氏模量增加到 225 GPa,在相同应变下比未掺杂的 YIG 薄膜产生更大的 Kuλ。对于面外场,具有 PMA 的 Bi-YIG 膜的测量峰到峰线宽 ΔH 为 20 Oe。导出的吉尔伯特阻尼常数为 7.03 × 10−4,表明磁损耗低。