当前位置: X-MOL 学术Comput. Aided Civ. Infrastruct. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A frequency‐domain noniterative algorithm for structural parameter identification of shear buildings subjected to frequent earthquakes
Computer-Aided Civil and Infrastructure Engineering ( IF 8.5 ) Pub Date : 2019-09-19 , DOI: 10.1111/mice.12502
Jingyao Zhang 1 , Takayoshi Aoki 2
Affiliation  

System identification is the key technique for damage detection in application of structural health monitoring. In contrast to modal parameters, changes in structural parameters (stiffness and damping) are more sensitive and straightforward for damage detection of a building under severe environments such as earthquakes. In this study, we first present the fundamental theory for direct identification of structural parameters by using the frequency‐domain responses of a shear building in frequent earthquakes. Shear buildings are widely adopted for structural analysis of low‐ and middle‐rise buildings in practice. Modal information, in terms of spectrum ratios, is implicitly used in the proposed noniterative algorithm to greatly improve the estimation accuracy as well as to avoid any human intervention. The fundamental theory is validated by the numerical and physical examples. The numerical examples are further used to verify the high efficiency, accuracy, and robustness of the proposed algorithm against noised responses. The proposed algorithm is highly efficient because no iterative computation is necessary, while the necessary Fourier transform of the dynamic responses is not very time consuming. Furthermore, the proposed algorithm is highly accurate and robust because (a) the fundamental theory behind the algorithm is straightforward: the identification values should have the same value irrespective of circular frequencies, according to the theory; (b) error in modal parameter identification is completely avoided because it is unnecessary to identify the exact values of the frequencies as in many existing methods.

中文翻译:

一种频域非迭代算法,用于地震作用下剪力建筑物的结构参数识别

系统识别是结构健康监测应用中损伤检测的关键技术。与模态参数相比,结构参数(刚度和阻尼)的变化对于地震等恶劣环境下的建筑物损伤检测更为敏感和直接。在这项研究中,我们首先介绍在地震中通过使用剪力建筑物的频域响应直接识别结构参数的基本理论。在实践中,剪力楼被广泛用于低层和中层楼房的结构分析。在频谱比率方面,模态信息被隐式地用于所提出的非迭代算法中,以极大地提高估计精度并避免任何人工干预。数值和物理实例验证了这一基本理论。数值示例进一步用于验证所提出算法针对噪声响应的高效性,准确性和鲁棒性。所提出的算法是高效的,因为不需要迭代计算,而动态响应的必要傅立叶变换不是很费时。此外,所提出的算法具有很高的准确性和鲁棒性,因为(a)该算法背后的基本理论很简单:根据该理论,识别值应与循环频率无关而具有相同的值;(b)完全避免了模态参数识别中的错误,因为与许多现有方法一样,无需识别频率的精确值。数值示例进一步用于验证所提出算法针对噪声响应的高效性,准确性和鲁棒性。所提出的算法是高效的,因为不需要迭代计算,而动态响应的必要傅立叶变换不是很费时。此外,所提出的算法具有很高的准确性和鲁棒性,因为(a)该算法背后的基本理论很简单:根据该理论,识别值应与循环频率无关而具有相同的值;(b)完全避免了模态参数识别中的错误,因为与许多现有方法一样,无需识别频率的精确值。数值示例进一步用于验证所提出算法针对噪声响应的高效性,准确性和鲁棒性。所提出的算法是高效的,因为不需要迭代计算,而动态响应的必要傅立叶变换不是很费时。此外,所提出的算法具有很高的准确性和鲁棒性,因为(a)该算法背后的基本理论很简单:根据理论,识别值应与循环频率无关而具有相同的值;(b)完全避免了模态参数识别中的错误,因为与许多现有方法一样,无需识别频率的精确值。提出的算法针对噪声响应的鲁棒性和鲁棒性。所提出的算法是高效的,因为不需要迭代计算,而动态响应的必要傅立叶变换不是很费时。此外,所提出的算法具有很高的准确性和鲁棒性,因为(a)该算法背后的基本理论很简单:根据该理论,识别值应与循环频率无关而具有相同的值;(b)完全避免了模态参数识别中的错误,因为与许多现有方法一样,无需识别频率的精确值。提出的算法针对噪声响应的鲁棒性和鲁棒性。所提出的算法是高效的,因为不需要迭代计算,而动态响应的必要傅立叶变换不是很费时。此外,所提出的算法具有很高的准确性和鲁棒性,因为(a)该算法背后的基本理论很简单:根据该理论,识别值应与循环频率无关而具有相同的值;(b)完全避免了模态参数识别中的错误,因为与许多现有方法一样,无需识别频率的精确值。动态响应的必要傅里叶变换不是很费时。此外,所提出的算法具有很高的准确性和鲁棒性,因为(a)该算法背后的基本理论很简单:根据该理论,识别值应与循环频率无关而具有相同的值;(b)完全避免了模态参数识别中的错误,因为与许多现有方法一样,无需识别频率的精确值。动态响应的必要傅里叶变换不是很费时。此外,所提出的算法具有很高的准确性和鲁棒性,因为(a)该算法背后的基本理论很简单:根据理论,识别值应与循环频率无关而具有相同的值;(b)完全避免了模态参数识别中的错误,因为与许多现有方法一样,无需识别频率的精确值。
更新日期:2019-09-19
down
wechat
bug