当前位置: X-MOL 学术Adv. Sust. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Highly Efficient UV–Visible Photocatalyst from Monolithic 3D Titania/Graphene Quantum Dot Heterostructure Linked by Aminosilane
Advanced Sustainable Systems ( IF 6.5 ) Pub Date : 2019-09-18 , DOI: 10.1002/adsu.201900084
Hyewon Yoon 1 , Kisung Lee 1 , Hyojung Kim 2 , Minsu Park 1 , Travis G. Novak 1 , Gayea Hyun 1 , Mun Seok Jeong 2 , Seokwoo Jeon 1
Affiliation  

As rapidly growing environmental pollution demands the development of efficient photocatalytic materials, tremendous attention has been drawn to TiO2, a widely used photocatalytic material with cost‐effectiveness, stability, and outstanding reactivity. To maximize its photocatalytic efficiency by enhancing the photogenerated charge separation, lowering the intrinsically large bandgap (3.2 eV) of TiO2 is a key problem to be overcome. Herein, a new design is reported for an efficient photocatalyst realized by heterostructuring a 3D nanostructured TiO2 monolith (3D TiO2) and graphene quantum dots (GQDs) through using 3‐aminopropyltriethoxysilane (APTES) as a linker. The incorporation of APTES between the TiO2/GQD interface enables the formation of a charge injection‐type heterostructure, as confirmed by transient absorption spectroscopy, providing improvement of both visible absorption and charge separation. As a result, the heterostructure exhibits a 242% enhanced photocatalytic performance compared to that of nonheterostructured 3D TiO2 under visible irradiation, demonstrating its promising potential for practical photocatalytic applications in environmental remediation.

中文翻译:

氨基硅烷连接的整体式3D二氧化钛/石墨烯量子点异质结构的高效紫外可见光催化剂

随着迅速增长的环境污染要求开发高效的光催化材料,TiO 2已经引起了极大的关注,TiO 2是一种具有成本效益,稳定性和出色的反应性的广泛使用的光催化材料。为了通过增强光生电荷的分离来最大化其光催化效率,降低本质上较大的TiO 2带隙(3.2 eV)是需要克服的关键问题。在本文中,报告了一种新的高效光催化剂设计,该催化剂通过使用3-氨基丙基三乙氧基硅烷(APTES)作为连接剂,异质结构化3D纳米结构TiO 2整料(3D TiO 2)和石墨烯量子点(GQDs)而实现。在TiO 2之间掺入APTES/ GQD界面可形成电荷注入型异质结构,这已由瞬态吸收光谱法证实,从而改善了可见光吸收和电荷分离。结果,与非杂结构的3D TiO 2在可见光照射下相比,该异结构显示出242%的增强的光催化性能,证明了其在环境修复中的实际光催化应用前景广阔。
更新日期:2019-11-14
down
wechat
bug