当前位置: X-MOL 学术Faraday Discuss. › 论文详情
Catalyst design insights from modelling a titanium-catalyzed multicomponent reaction.
Faraday Discussions ( IF 3.797 ) Pub Date : 2019-12-02 , DOI: 10.1039/c9fd00033j
Kelly E Aldrich,Dhwani Kansal,Aaron L Odom

High oxidation state transition metal catalysis touches our daily lives through bulk chemical production, e.g. olefin polymerization, and through specialty chemical reactions common in organic synthesis, e.g. the Sharpless asymmetric epoxidation and olefin dihydroxylation. Our group has been expanding the reaction chemistry of titanium(iv) to produce a host of nitrogen-based heterocycles via multicomponent coupling reactions. One such multicomponent coupling reaction discovered in our laboratory is iminoamination, involving an amine, an alkyne, and an isonitrile. However, the experimental modeling of high oxidation state reactions lags far behind that of low oxidation state systems, where a great deal is known about ligands, their donor properties and how their structures affect catalysis. As a result, we have developed an experimental method for determining the donor abilities of anionic ligands on high oxidation state systems, which is based on the chromium(vi) nitride system NCr(NiPr2)2X, where X = the ligand being interrogated. The parameters obtained are simply called ligand donor parameters (LDP). In this contribution, a detailed optimization of the Ti(NMe2)2(dpm)-catalyzed iminoamination reaction was carried out, where dpm = 5,5-dimethyldipyrrolylmethane. During the course of these studies, dimeric {Ti(μ-N-tolyl)(dpm)}2 was isolated, which is proposed as the resting state of the catalyst. To destabilize this resting state, a more electron-rich bis(aryloxide) catalyst system was investigated. The more electron-rich system is somewhat more active for iminoamination under some conditions; however, the catalyst is prone to disproportionation. A study of heteroleptic titanium complexes revealed that the disproportionation equilibrium constant can be effectively modeled as a function of the square of the difference in LDP between the ligands, (ΔLDP)2. Using this methodology, one can estimate the stability of titanium complexes toward disproportionation.
更新日期:2019-12-04

 

全部期刊列表>>
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
彭小水
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
赵延川
李霄羽
廖矿标
朱守非
试剂库存
down
wechat
bug