当前位置: X-MOL 学术Plant Cell Physiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Altered Plant and Nodule Development and Protein S-Nitrosylation in Lotus japonicus Mutants Deficient in S-Nitrosoglutathione Reductases.
Plant & Cell Physiology ( IF 3.9 ) Pub Date : 2020-01-01 , DOI: 10.1093/pcp/pcz182
Manuel A Matamoros 1 , Maria C Cutrona 1 , Stefanie Wienkoop 2 , Juan C Begara-Morales 3 , Niels Sandal 4 , Irene Orera 5 , Juan B Barroso 3 , Jens Stougaard 4 , Manuel Becana 1
Affiliation  

Nitric oxide (NO) is a crucial signaling molecule that conveys its bioactivity mainly through protein S-nitrosylation. This is a reversible post-translational modification (PTM) that may affect protein function. S-nitrosoglutathione (GSNO) is a cellular NO reservoir and NO donor in protein S-nitrosylation. The enzyme S-nitrosoglutathione reductase (GSNOR) degrades GSNO, thereby regulating indirectly signaling cascades associated with this PTM. Here, the two GSNORs of the legume Lotus japonicus, LjGSNOR1 and LjGSNOR2, have been functionally characterized. The LjGSNOR1 gene is very active in leaves and roots, whereas LjGSNOR2 is highly expressed in nodules. The enzyme activities are regulated in vitro by redox-based PTMs. Reducing conditions and hydrogen sulfide-mediated cysteine persulfidation induced both activities, whereas cysteine oxidation or glutathionylation inhibited them. Ljgsnor1 knockout mutants contained higher levels of S-nitrosothiols. Affinity chromatography and subsequent shotgun proteomics allowed us to identify 19 proteins that are differentially S-nitrosylated in the mutant and the wild-type. These include proteins involved in biotic stress, protein degradation, antioxidant protection and photosynthesis. We propose that, in the mutant plants, deregulated protein S-nitrosylation contributes to developmental alterations, such as growth inhibition, impaired nodulation and delayed flowering and fruiting. Our results highlight the importance of GSNOR function in legume biology.

中文翻译:

缺乏S-亚硝基谷胱甘肽还原酶的莲花日本突变体中植物和根瘤的发育和蛋白S-亚硝基化。

一氧化氮(NO)是至关重要的信号分子,主要通过蛋白质S-亚硝基化表达其生物活性。这是可逆的翻译后修饰(PTM),可能会影响蛋白质功能。S-亚硝基谷胱甘肽(GSNO)是细胞NO储存区,也是蛋白S-亚硝基化中的NO供体。酶S-亚硝基谷胱甘肽还原酶(GSNOR)降解GSNO,从而间接调节与此PTM相关的信号级联。在这里,豆科植物日本莲花的两个GSNOR,LjGSNOR1和LjGSNOR2,已经进行了功能鉴定。LjGSNOR1基因在叶和根中非常活跃,而LjGSNOR2在结节中高表达。酶的活性在体外由基于氧化还原的PTM调节。还原条件和硫化氢介导的半胱氨酸过硫化诱导了两种活性,而半胱氨酸氧化或谷胱甘肽化抑制了它们。Ljgsnor1基因敲除突变体包含更高水平的S-亚硝基硫醇。亲和色谱和随后的shot弹枪蛋白质组学使我们能够鉴定出19种在突变体和野生型中差异性S-亚硝化的蛋白质。这些包括与生物胁迫,蛋白质降解,抗氧化保护和光合作用有关的蛋白质。我们建议,在突变植物中,失调的蛋白S-亚硝基化有助于发育变化,例如生长抑制,结瘤受损以及开花结果延迟。我们的结果突出了GSNOR功能在豆科生物学中的重要性。亲和色谱和随后的shot弹枪蛋白质组学使我们能够鉴定出19种在突变体和野生型中差异性S-亚硝化的蛋白质。这些包括与生物胁迫,蛋白质降解,抗氧化保护和光合作用有关的蛋白质。我们建议,在突变植物中,失调的蛋白S-亚硝基化有助于发育变化,例如生长抑制,结瘤受损以及开花结果延迟。我们的结果突出了GSNOR功能在豆科生物学中的重要性。亲和色谱和随后的shot弹枪蛋白质组学使我们能够鉴定出19种在突变体和野生型中差异性S-亚硝化的蛋白质。这些包括与生物胁迫,蛋白质降解,抗氧化保护和光合作用有关的蛋白质。我们建议,在突变植物中,失调的蛋白S-亚硝基化有助于发育变化,例如生长抑制,结瘤受损以及开花结果延迟。我们的结果突出了GSNOR功能在豆科生物学中的重要性。失调的蛋白S-亚硝基化有助于发育改变,例如生长抑制,结瘤受损以及开花结果延迟。我们的结果突出了GSNOR功能在豆科生物学中的重要性。失调的蛋白S-亚硝基化有助于发育改变,例如生长抑制,结瘤受损以及开花结果延迟。我们的结果突出了GSNOR功能在豆科生物学中的重要性。
更新日期:2020-01-24
down
wechat
bug