当前位置: X-MOL 学术Mol. Cell. Neurosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Role of fast inhibitory synaptic transmission in neonatal respiratory rhythmogenesis and pattern formation.
Molecular and Cellular Neuroscience ( IF 2.6 ) Pub Date : 2019-08-28 , DOI: 10.1016/j.mcn.2019.103400
Michael George Zaki Ghali 1 , Sarah Beshay 2
Affiliation  

Several studies have investigated the general role of chloride-based neurotransmission (GABAA and glycinergic signaling) in respiratory rhythmogenesis and pattern formation. In several brain regions, developmental alterations in these signaling pathways have been shown to be mediated by changes in cation-chloride cotransporter (CC) expression. For instance, CC expression changes during the course of neonatal development in medullary respiratory nuclei and other brain/spinal cord regions in a manner which decreases the cellular import, and increases the export, of chloride ions, shifting reversal potentials for chloride to progressively more negative values with maturation. In slice preparations of the same, this is related to an excitatory-to-inhibitory shift of GABAA- and glycinergic signaling. In medullary slices, GABAA-/glycinergic signaling in the early neonatal period is excitatory, becoming inhibitory over time. Additionally, blockade of the Na+/K+/2Cl- cotransporter, which imports these ions via secondary active transport, converts excitatory response to inhibitory ones. These effects have not yet been demonstrated at the individual respiratory-related neuron level to occur in intact (in vivo or in situ) animal preparations, which in contrast to slices, possess normal network connectivity and natural sources of tonic drive. Developmental changes in respiratory rhythm generating and pattern forming pontomedullary respiratory circuitry may contribute to critical periods, during which there exist increased risk for perinatal respiratory disturbances of central, obstructive, or hypoxia/hypercapnia-induced origin, including the sudden infant death syndrome. Thus, better characterizing the neurochemical maturation of the central respiratory network will enhance our understanding of these conditions, which will facilitate development of targeted therapies for respiratory disturbances in neonates and infants.

中文翻译:

快速抑制突触传递在新生儿呼吸节律和模式形成中的作用。

几项研究调查了基于氯离子的神经传递(GABAA和甘氨酸能信号传导)在呼吸节律和模式形成中的一般作用。在几个大脑区域中,这些信号传导途径的发育改变已被证明是由阳离子-氯化物共转运蛋白(CC)表达的变化介导的。例如,在新生儿发育过程中,髓质呼吸核和其他脑/脊髓区域的CC表达发生改变,从而减少了氯离子的细胞进口,增加了氯离子的输出,使氯离子的逆转电位逐渐变为负离子。成熟的价值。在相同的切片制品中,这与GABAA和甘氨酸能信号传导的兴奋性向抑制性转变有关。在髓质切片中 新生儿早期的GABAA- /甘氨酸能信号传导是兴奋性的,随着时间的推移会变得抑制。另外,Na + / K + / 2Cl-共转运蛋白的阻断(通过二次主动转运导入这些离子)将兴奋性反应转化为抑制性反应。尚未在完整的(体内或原位)动物制剂中出现与个体呼吸有关的神经元水平的这些效应,与切片相反,该动物制剂具有正常的网络连通性和滋补驱动力的天然来源。呼吸节律的产生和模式形成桥状延髓呼吸回路的发育变化可能会导致关键时期,在此期间,围产期由中枢性,阻塞性或低氧/高碳酸血症引起的起源的呼吸系统疾病的风险增加,包括婴儿猝死综合征。
更新日期:2019-08-28
down
wechat
bug