当前位置: X-MOL 学术Nanoscale Horiz. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Role of the anatase/TiO2(B) heterointerface for ultrastable high-rate lithium and sodium energy storage performance†
Nanoscale Horizons ( IF 8.0 ) Pub Date : 2019-08-29 , DOI: 10.1039/c9nh00402e
Guilong Liu 1, 2, 3, 4, 5 , Hong-Hui Wu 6, 7, 8, 9, 10 , Qiangqiang Meng 5, 11, 12, 13 , Ting Zhang 1, 2, 3, 4, 5 , Dong Sun 1, 2, 3, 4, 5 , Xueyang Jin 1, 2, 3, 4, 5 , Donglei Guo 1, 2, 3, 4, 5 , Naiteng Wu 1, 2, 3, 4, 5 , Xianming Liu 1, 2, 3, 4, 5 , Jang-Kyo Kim 5, 14, 15, 16
Affiliation  

This paper is dedicated to elucidating the role of the anatase/TiO2(B) heterointerface, which functions as an ‘ion reservoir’ for dominant pseudocapacitance, for ultrastable high-rate energy storage in both Li-ion and Na-ion batteries (LIBs, SIBs). Dual-phase nanosheets are in situ assembled to form anatase/TiO2(B) nanoflower-shaped anodes via a facile hydrothermal and thermolysis process. The abundant oxygen vacancies on the ultrathin nanosheets favor pseudocapacitive behaviors and fast ionic/electronic transport during Li+/Na+ insertion/extraction cycles. The density functional theory calculations combined with ab initio molecular dynamics simulations corroborate the important role of the anatase/TiO2(B) heterointerface in promoting electrochemical kinetics. The heterointerface has much lower adsorption energies of Li+/Na+ than in each phase acting alone, and the presence of an internal electric field with a high ionic concentration at the interface ameliorates charge transport. Therefore, the dual-phase anodes deliver ultrastable electrochemical performance with high specific capacities of 193 and 112 mA h g−1 at an exceptionally fast 20 C in LIBs and SIBs, respectively. Their cycling stability is equally remarkable, sustaining reversible capacities of 212 mA h g−1 at 10 C and 173 mA h g−1 at 5 C after 1000 cycles, respectively. These new findings may help rationally design high-performance multi-functional anodes for next-generation metal-ion batteries.

中文翻译:

锐钛矿/ TiO 2(B)异质界面在超稳定高速率锂和钠储能性能中的作用

本文致力于阐明锐钛矿型/ TiO 2(B)异质界面的作用,该界面可作为主要假电容的“离子库”,用于锂离子和钠离子电池(LIB)中的超稳定高速储能,SIB)。双相纳米片通过简便的水热和热解过程原位组装以形成锐钛矿/ TiO 2(B)纳米花形阳极。Li + / Na +插入/萃取循环期间,超薄纳米片上的大量氧空位有利于伪电容行为和快速的离子/电子传输。结合从头算起的密度泛函理论计算分子动力学模拟证实了锐钛矿/ TiO 2(B)异质界面在促进电化学动力学中的重要作用。与单独作用的每个相相比,异质界面的Li + / Na +吸附能低得多,并且在界面处存在具有高离子浓度的内部电场可以改善电荷传输。因此,双相阳极分别在LIB和SIB中以极快的20 C提供超稳定的电化学性能,分别具有193和112 mA hg -1的高比容量。它们的循环稳定性同样出色,在10 C和173 mA hg -1时可维持212 mA hg -1的可逆容量。在1000次循环后分别在5 C下。这些新发现可能有助于合理设计用于下一代金属离子电池的高性能多功能阳极。
更新日期:2019-12-17
down
wechat
bug