当前位置: X-MOL 学术Annu. Rev. Astron. Astrophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Star Clusters Across Cosmic Time
Annual Review of Astronomy and Astrophysics ( IF 26.3 ) Pub Date : 2019-08-18 , DOI: 10.1146/annurev-astro-091918-104430
Mark R. Krumholz 1, 2 , Christopher F. McKee 3 , Joss Bland-Hawthorn 2, 4, 5
Affiliation  

Star clusters stand at the intersection of much of modern astrophysics: the interstellar medium, gravitational dynamics, stellar evolution, and cosmology. Here we review observations and theoretical models for the formation, evolution, and eventual disruption of star clusters. Current literature suggests a picture of this life cycle with several phases: (1) Clusters form in hierarchically-structured, accreting molecular clouds that convert gas into stars at a low rate per dynamical time until feedback disperses the gas. (2) The densest parts of the hierarchy resist gas removal long enough to reach high star formation efficiency, becoming dynamically-relaxed and well-mixed. These remain bound after gas removal. (3) In the first $\sim 100$ Myr after gas removal, clusters disperse moderately fast, through a combination of mass loss and tidal shocks by dense molecular structures in the star-forming environment. (4) After $\sim 100$ Myr, clusters lose mass via two-body relaxation and shocks by giant molecular clouds, processes that preferentially affect low-mass clusters and cause a turnover in the cluster mass function to appear on $\sim 1-10$ Gyr timescales. (5) Even after dispersal, some clusters remain coherent and thus detectable in chemical or action space for multiple galactic orbits. In the next decade a new generation of space- and AO-assisted ground-based telescopes will enable us to test and refine this picture.

中文翻译:

跨越宇宙时间的星团

星团处于许多现代天体物理学的交叉点:星际介质、引力动力学、恒星演化和宇宙学。在这里,我们回顾了星团形成、演化和最终破坏的观测和理论模型。目前的文献提出了这个生命周期的几个阶段的图景:(1)星团在分层结构的吸积分子云中形成,每个动态时间以低速率将气体转化为恒星,直到反馈分散气体。(2) 层次结构中最密集的部分抵抗气体去除足够长的时间以达到高的恒星形成效率,变得动态松弛和良好混合。这些在气体去除后保持结合。(3) 在除气后的第一个 $\sim 100$ Myr 中,团簇分散速度适中,通过恒星形成环境中致密分子结构的质量损失和潮汐冲击的组合。(4) 在 $\sim 100$ Myr 之后,星团通过双体弛豫和巨大分子云的冲击失去质量,这些过程优先影响低质量星团并导致星团质量函数翻转出现在 $\sim 1 -10$ Gyr 时间刻度。(5) 即使在分散之后,一些星团仍然保持连贯,因此可以在多个银河轨道的化学或作用空间中检测到。在接下来的十年中,新一代的空间和 AO 辅助地面望远镜将使我们能够测试和完善这张图片。优先影响低质量簇并导致簇质量函数中出现周转的过程出现在 $\sim 1-10$ Gyr 时间尺度上。(5) 即使在分散之后,一些星团仍然保持连贯,因此可以在多个银河轨道的化学或作用空间中检测到。在接下来的十年中,新一代的空间和 AO 辅助地面望远镜将使我们能够测试和完善这张图片。优先影响低质量簇并导致簇质量函数中出现周转的过程出现在 $\sim 1-10$ Gyr 时间尺度上。(5) 即使在分散之后,一些星团仍然保持连贯,因此可以在多个银河轨道的化学或作用空间中检测到。在接下来的十年中,新一代的空间和 AO 辅助地面望远镜将使我们能够测试和完善这张图片。
更新日期:2019-08-18
down
wechat
bug