当前位置: X-MOL 学术Rev. Geophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Role of Chemistry in Fracture Pattern Development and Opportunities to Advance Interpretations of Geological Materials
Reviews of Geophysics ( IF 25.2 ) Pub Date : 2019-09-01 , DOI: 10.1029/2019rg000671
S. E. Laubach 1 , R. H. Lander 2 , L. J. Criscenti 3 , L. M. Anovitz 4 , J. L. Urai 5 , R. M. Pollyea 6 , J. N. Hooker 7 , W. Narr 8 , M. A. Evans 9 , S. N. Kerisit 10 , J. E. Olson 11 , T. Dewers 3 , D. Fisher 7 , R. Bodnar 6 , B. Evans 12 , P. Dove 6 , L. M. Bonnell 2 , M. P. Marder 13 , L. Pyrak‐Nolte 14
Affiliation  

Fracture pattern development has been a challenging area of research in the Earth sciences for more than 100 years. Much has been learned about the spatial and temporal complexity inherent to these systems, but severe challenges remain. Future advances will require new approaches. Chemical processes play a larger role in opening‐mode fracture pattern development than has hitherto been appreciated. This review examines relationships between mechanical and geochemical processes that influence the fracture patterns recorded in natural settings. For fractures formed in diagenetic settings (~50 to 200 °C), we review evidence of chemical reactions in fractures and show how a chemical perspective helps solve problems in fracture analysis. We also outline impediments to subsurface pattern measurement and interpretation, assess implications of discoveries in fracture history reconstruction for process‐based models, review models of fracture cementation and chemically assisted fracture growth, and discuss promising paths for future work. To accurately predict the mechanical and fluid flow properties of fracture systems, a processes‐based approach is needed. Progress is possible using observational, experimental, and modeling approaches that view fracture patterns and properties as the result of coupled mechanical and chemical processes. A critical area is reconstructing patterns through time. Such data sets are essential for developing and testing predictive models. Other topics that need work include models of crystal growth and dissolution rates under geological conditions, cement mechanical effects, and subcritical crack propagation. Advances in machine learning and 3‐D imaging present opportunities for a mechanistic understanding of fracture formation and development, enabling prediction of spatial and temporal complexity over geologic timescales. Geophysical research with a chemical perspective is needed to correctly identify and interpret fractures from geophysical measurements during site characterization andmonitoring of subsurface engineering activities. Plain Language Summary Fracture patterns in rock strongly affect directions, magnitudes, and heterogeneities of both fluid flow and rock strength. Accurate and testable predictions of patterns are essential for understanding many societally important processes in the Earth and for effectively managing subsurface engineering operations. Chemical processes play a larger role in opening‐mode fracture pattern development than has hitherto been appreciated. For fractures formed at depths of ~1–10 km and temperatures of 50–200 °C, new evidence shows chemical reactions are common and more diverse than previously recognized. We describe how viewing fracture formation and evolution from a chemical perspective helps to solve problems in fracture pattern analysis. We outline the main impediments to subsurface fracture pattern measurement and interpretation, assess implications of recent discoveries in ©2019. The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. REVIEW ARTICLE 10.1029/2019RG000671 Key Points: • A chemical perspective helps solve challenges to understanding subsurface fractures: inadequate samples, ambiguous analogs, and difficulties determining which models are correct from observations • Many tools of chemical analysis, experiment, modeling, and theory have yet to be brought to bear on understanding how fracture patterns develop at geological timescales • Chemical and mechanical investigations together have great potential to solve challenging practical problems in subsurface science Correspondence to: S. E. Laubach, steve.laubach@beg.utexas.edu Citation: Laubach, S. E., Lander, R. H., Criscenti, L. J., Anovitz, L. M., Urai, J. L., Pollyea, R. M., et al. (2019). The role of chemistry in fracture pattern development and opportunities to advance interpretations of geological materials. Reviews of Geophysics, 57 https://doi.org/10.1029/ 2019RG000671 Received 30 JUL 2019 Accepted 6 AUG 2019 Accepted article online 22 AUG 2019 LAUBACH ET AL. Published online 13 SEP 2019 , 1065–1111.

中文翻译:

化学在裂缝模式发展中的作用和促进地质材料解释的机会

100 多年来,断裂模式的发展一直是地球科学中一个具有挑战性的研究领域。关于这些系统固有的空间和时间复杂性,我们已经了解了很多,但仍然存在严峻的挑战。未来的进步将需要新的方法。化学过程在开放模式断裂模式发展中发挥的作用比迄今为止所认识到的要大。本综述考察了影响自然环境中记录的断裂模式的机械和地球化学过程之间的关系。对于在成岩环境(约 50 至 200 °C)中形成的裂缝,我们回顾了裂缝中化学反应的证据,并展示了化学视角如何帮助解决裂缝分析中的问题。我们还概述了地下模式测量和解释的障碍,评估裂缝历史重建发现对基于过程的模型的影响,审查裂缝胶结和化学辅助裂缝生长的模型,并讨论未来工作的有希望的路径。为了准确预测压裂系统的机械和流体流动特性,需要一种基于过程的方法。使用观察、实验和建模方法可以取得进展,这些方法将断裂模式和属性视为耦合机械和化学过程的结果。一个关键领域是通过时间重建模式。此类数据集对于开发和测试预测模型至关重要。其他需要研究的主题包括地质条件下的晶体生长和溶解速率模型、水泥机械效应和亚临界裂纹扩展。机器学习和 3-D 成像的进步为对裂缝形成和发展的机械理解提供了机会,从而能够预测地质时间尺度上的空间和时间复杂性。在地下工程活动的现场表征和监测期间,需要从化学角度进行地球物理研究,以正确识别和解释地球物理测量中的裂缝。简单语言总结 岩石中的断裂模式强烈影响流体流动和岩石强度的方向、幅度和非均质性。准确和可测试的模式预测对于理解地球上许多重要的社会过程和有效管理地下工程操作至关重要。化学过程在开放模式断裂模式发展中发挥的作用比迄今为止所认识到的要大。对于在约 1-10 公里的深度和 50-200 °C 的温度下形成的裂缝,新的证据表明化学反应是常见的,而且比以前认识到的更加多样化。我们描述了如何从化学角度观察裂缝形成和演化有助于解决裂缝模式分析中的问题。我们概述了地下裂缝模式测量和解释的主要障碍,评估了 ©2019 中最近发现的影响。作者。这是一篇基于知识共享署名许可条款的开放获取文章,允许在任何媒体中使用、分发和复制,前提是原始作品被正确引用。回顾文章 10.1029/2019RG000671 要点:• 化学视角有助于解决理解地下裂缝的挑战:样本不足、模棱两可,以及难以根据观察确定哪些模型是正确的 • 许多化学分析、实验、建模和理论工具尚未用于理解如何裂缝模式在地质时间尺度上发展 • 化学和机械研究共同具有解决地下科学中具有挑战性的实际问题的巨大潜力 通讯作者:SE Laubach, steve.laubach@beg.utexas.edu 引文:Laubach, SE, Lander, RH, Criscenti, LJ、Anovitz、LM、Urai、JL、Pollyea、RM 等。(2019)。化学在裂缝模式发展中的作用和推进地质材料解释的机会。地球物理学评论,57 https://doi.org/10。1029/ 2019RG000671 2019 年 7 月 30 日接收 2019 年 8 月 6 日接受 2019 年 8 月 6 日接受在线文章 2019 年 8 月 22 日 LAUBACH 等人。2019 年 9 月 13 日在线发布,1065-1111。
更新日期:2019-09-01
down
wechat
bug