当前位置: X-MOL 学术Neuroscientist › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Epigenome Interactions with Patterned Neuronal Activity.
The Neuroscientist ( IF 3.5 ) Pub Date : 2018-02-27 , DOI: 10.1177/1073858418760744
Jillian Belgrad 1 , R Douglas Fields 1
Affiliation  

The temporal coding of action potential activity is fundamental to nervous system function. Here we consider how gene expression in neurons is regulated by specific patterns of action potential firing, with an emphasis on new information on epigenetic regulation of gene expression. Patterned action potential activity activates intracellular signaling networks selectively in accordance with the kinetics of activation and inactivation of second messengers, phosphorylation and dephosphorylation of protein kinases, and cytoplasmic and nuclear calcium dynamics, which differentially activate specific transcription factors. Increasing evidence also implicates activity-dependent regulation of epigenetic mechanisms to alter chromatin architecture. Changes in three-dimensional chromatin structure, including chromatin compaction, looping, double-stranded DNA breaks, histone and DNA modification, are altered by action potential activity to selectively inhibit or promote transcription of specific genes. These mechanisms of activity-dependent regulation of gene expression are important in neural development, plasticity, and in neurological and psychological disorders.

中文翻译:


表观基因组与模式神经元活动的相互作用。



动作电位活动的时间编码是神经系统功能的基础。在这里,我们考虑神经元中的基因表达如何受到动作电位放电的特定模式的调节,重点是关于基因表达的表观遗传调节的新信息。模式化的动作电位活动根据第二信使的激活和失活动力学、蛋白激酶的磷酸化和去磷酸化以及细胞质和核钙动力学选择性地激活细胞内信号网络,从而差异性地激活特定的转录因子。越来越多的证据还表明表观遗传机制的活动依赖性调节可以改变染色质结构。三维染色质结构的变化,包括染色质压缩、成环、双链 DNA 断裂、组蛋白和 DNA 修饰,通过动作电位活性改变,选择性抑制或促进特定基因的转录。这些基因表达的活动依赖性调节机制对于神经发育、可塑性以及神经和心理疾病非常重要。
更新日期:2018-02-27
down
wechat
bug