当前位置: X-MOL 学术Int. Mater. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling dislocations and heat conduction in crystalline materials: atomistic/continuum coupling approaches
International Materials Reviews ( IF 16.8 ) Pub Date : 2018-06-25 , DOI: 10.1080/09506608.2018.1486358
Shuozhi Xu 1 , Xiang Chen 2
Affiliation  

ABSTRACT Dislocations and heat conduction are essential components that influence properties and performance of crystalline materials, yet the modelling of which remains challenging partly due to their multiscale nature that necessitates simultaneously resolving the short-range dislocation core, the long-range dislocation elastic field, and the transport of heat carriers such as phonons with a wide range of characteristic length scale. In this context, multiscale materials modelling based on atomistic/continuum coupling has attracted increased attention within the materials science community. In this paper, we review key characteristics of five representative atomistic/continuum coupling approaches, including the atomistic-to-continuum method, the bridging domain method, the concurrent atomistic–continuum method, the coupled atomistic/discrete-dislocation method, and the quasicontinuum method, as well as their applications to dislocations, heat conduction, and dislocation/phonon interactions in crystalline materials. Through problem-centric comparisons, we shed light on the advantages and limitations of each method, as well as the path towards enabling them to effectively model various material problems in engineering from nano- to mesoscale. Abbreviations: AtC: atomistic-to-continuum; BCC: body-centred cubic; BDM: bridging domain method; CAC: concurrent atomistic–continuum; CADD: coupled atomistic/discrete-dislocation; DDD: discrete dislocation dynamics; DDf-MD: discrete diffusion-molecular dynamics; DOF: degree of freedom; ESCM: embedded statistical coupling method; FCC: face-centred cubic; GB: grain boundary; XFEM: extended finite element method; MD: molecular dynamics; MS: molecular statics; PK: Peach-Koehler; QC: quasicontinuum

中文翻译:

模拟晶体材料中的位错和热传导:原子/连续耦合方法

摘要 位错和热传导是影响晶体材料性质和性能的重要组成部分,但其建模仍然具有挑战性,部分原因是它们的多尺度性质需要同时解析短程位错核、长程位错弹性场和热载体的传输,例如具有广泛特征长度尺度的声子。在这种情况下,基于原子/连续耦合的多尺度材料建模在材料科学界引起了越来越多的关注。在本文中,我们回顾了五种代表性原子/连续介质耦合方法的关键特征,包括原子到连续介质方法、桥接域方法、并发原子-连续介质方法、耦合原子/离散位错方法和准连续谱方法,以及它们在晶体材料中的位错、热传导和位错/声子相互作用中的应用。通过以问题为中心的比较,我们阐明了每种方法的优点和局限性,以及使它们能够有效模拟从纳米到中尺度工程中各种材料问题的途径。缩写词: AtC:atomic-to-continuum;BCC:体心立方;BDM:桥接域方法;CAC:并发原子-连续体;CADD:耦合原子/离散位错;DDD:离散位错动力学;DDf-MD:离散扩散-分子动力学;DOF:自由度;ESCM:嵌入式统计耦合方法;FCC:面心立方;GB:晶界;XFEM:扩展有限元法;医学博士:分子动力学;MS:分子静力学;PK:Peach-Koehler;QC:准连续谱
更新日期:2018-06-25
down
wechat
bug