当前位置: X-MOL 学术Matrix Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Transcriptomic analysis reveals that BMP4 sensitizes glioblastoma tumor-initiating cells to mechanical cues.
Matrix Biology ( IF 6.9 ) Pub Date : 2019-06-09 , DOI: 10.1016/j.matbio.2019.06.002
Jasmine H Hughes 1 , Jeanette M Ewy 2 , Joseph Chen 3 , Sophie Y Wong 1 , Kevin M Tharp 4 , Andreas Stahl 5 , Sanjay Kumar 6
Affiliation  

The poor prognosis of glioblastoma (GBM) is associated with a highly invasive stem-like subpopulation of tumor-initiating cells (TICs), which drive recurrence and contribute to intra-tumoral heterogeneity through differentiation. These TICs are better able to escape extracellular matrix-imposed mechanical restrictions on invasion than their more differentiated progeny, and sensitization of TICs to extracellular matrix mechanics extends survival in preclinical models of GBM. However, little is known about the molecular basis of the relationship between TIC differentiation and mechanotransduction. Here we explore this relationship through a combination of transcriptomic analysis and studies with defined-stiffness matrices. We show that TIC differentiation induced by bone morphogenetic protein 4 (BMP4) suppresses expression of proteins relevant to extracellular matrix signaling and sensitizes TIC spreading to matrix stiffness. Moreover, our findings point towards a previously unappreciated connection between BMP4-induced differentiation, mechanotransduction, and metabolism. Notably, stiffness and differentiation modulate oxygen consumption, and inhibition of oxidative phosphorylation influences cell spreading in a stiffness- and differentiation-dependent manner. Our work integrates bioinformatic analysis with targeted molecular measurements and perturbations to yield new insight into how morphogen-induced differentiation influences how GBM TICs process mechanical inputs.

中文翻译:

转录组学分析显示BMP4使胶质母细胞瘤肿瘤起始细胞对机械提示敏感。

胶质母细胞瘤(GBM)的不良预后与肿瘤起始细胞(TICs)的高侵袭性干样亚群相关,后者驱动肿瘤复发并通过分化促进肿瘤内异质性。这些TIC与其更分化的后代相比,能够更好地摆脱细胞外基质对入侵的机械限制,并且TICs对细胞外基质力学的敏感性延长了GBM临床前模型的生存期。然而,关于TIC分化和机械转导之间关系的分子基础知之甚少。在这里,我们通过转录组分析和定义刚度矩阵的研究来探索这种关系。我们显示,由骨形态发生蛋白4(BMP4)诱导的TIC分化抑制了与细胞外基质信号相关的蛋白质的表达,并使TIC扩散至基质硬度。此外,我们的发现指向BMP4诱导的分化,机械转导和代谢之间以前未曾认识到的联系。值得注意的是,刚度和分化会调节耗氧量,而抑制氧化磷酸化会以依赖于刚度和分化的方式影响细胞扩散。我们的工作将生物信息学分析与针对性的分子测量和扰动相结合,以产生新的见解,以了解吗啡原诱导的分化如何影响GBM TICs如何处理机械输入。我们的发现指向BMP4诱导的分化,机械转导和代谢之间以前未曾认识到的联系。值得注意的是,刚度和分化会调节耗氧量,而抑制氧化磷酸化会以依赖于刚度和分化的方式影响细胞扩散。我们的工作将生物信息学分析与针对性的分子测量和扰动相结合,以产生新的见解,以了解吗啡原诱导的分化如何影响GBM TICs如何处理机械输入。我们的发现指向BMP4诱导的分化,机械转导和代谢之间以前未曾认识到的联系。值得注意的是,刚度和分化会调节耗氧量,而抑制氧化磷酸化会以依赖于刚度和分化的方式影响细胞扩散。我们的工作将生物信息学分析与目标分子测量和扰动相结合,以提供新的见解,以了解形态发生子诱导的分化如何影响GBM TIC如何处理机械输入。氧化磷酸化的抑制作用会以依赖于硬度和分化的方式影响细胞的扩散。我们的工作将生物信息学分析与针对性的分子测量和扰动相结合,以产生新的见解,以了解吗啡原诱导的分化如何影响GBM TICs如何处理机械输入。氧化磷酸化的抑制作用会以依赖于硬度和分化的方式影响细胞的扩散。我们的工作将生物信息学分析与针对性的分子测量和扰动相结合,以产生新的见解,以了解吗啡原诱导的分化如何影响GBM TICs如何处理机械输入。
更新日期:2019-11-18
down
wechat
bug